Metamath Proof Explorer


Theorem wunco

Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
wunco.3
|- ( ph -> B e. U )
Assertion wunco
|- ( ph -> ( A o. B ) e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 wunco.3
 |-  ( ph -> B e. U )
4 1 3 wundm
 |-  ( ph -> dom B e. U )
5 dmcoss
 |-  dom ( A o. B ) C_ dom B
6 5 a1i
 |-  ( ph -> dom ( A o. B ) C_ dom B )
7 1 4 6 wunss
 |-  ( ph -> dom ( A o. B ) e. U )
8 1 2 wunrn
 |-  ( ph -> ran A e. U )
9 rncoss
 |-  ran ( A o. B ) C_ ran A
10 9 a1i
 |-  ( ph -> ran ( A o. B ) C_ ran A )
11 1 8 10 wunss
 |-  ( ph -> ran ( A o. B ) e. U )
12 1 7 11 wunxp
 |-  ( ph -> ( dom ( A o. B ) X. ran ( A o. B ) ) e. U )
13 relco
 |-  Rel ( A o. B )
14 relssdmrn
 |-  ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) )
15 13 14 mp1i
 |-  ( ph -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) )
16 1 12 15 wunss
 |-  ( ph -> ( A o. B ) e. U )