Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wunop.2 |
|- ( ph -> A e. U ) |
3 |
|
wunco.3 |
|- ( ph -> B e. U ) |
4 |
1 3
|
wundm |
|- ( ph -> dom B e. U ) |
5 |
|
dmcoss |
|- dom ( A o. B ) C_ dom B |
6 |
5
|
a1i |
|- ( ph -> dom ( A o. B ) C_ dom B ) |
7 |
1 4 6
|
wunss |
|- ( ph -> dom ( A o. B ) e. U ) |
8 |
1 2
|
wunrn |
|- ( ph -> ran A e. U ) |
9 |
|
rncoss |
|- ran ( A o. B ) C_ ran A |
10 |
9
|
a1i |
|- ( ph -> ran ( A o. B ) C_ ran A ) |
11 |
1 8 10
|
wunss |
|- ( ph -> ran ( A o. B ) e. U ) |
12 |
1 7 11
|
wunxp |
|- ( ph -> ( dom ( A o. B ) X. ran ( A o. B ) ) e. U ) |
13 |
|
relco |
|- Rel ( A o. B ) |
14 |
|
relssdmrn |
|- ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
15 |
13 14
|
mp1i |
|- ( ph -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
16 |
1 12 15
|
wunss |
|- ( ph -> ( A o. B ) e. U ) |