| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 |  |-  ( ph -> U e. WUni ) | 
						
							| 2 |  | wunop.2 |  |-  ( ph -> A e. U ) | 
						
							| 3 |  | wunco.3 |  |-  ( ph -> B e. U ) | 
						
							| 4 | 1 3 | wundm |  |-  ( ph -> dom B e. U ) | 
						
							| 5 |  | dmcoss |  |-  dom ( A o. B ) C_ dom B | 
						
							| 6 | 5 | a1i |  |-  ( ph -> dom ( A o. B ) C_ dom B ) | 
						
							| 7 | 1 4 6 | wunss |  |-  ( ph -> dom ( A o. B ) e. U ) | 
						
							| 8 | 1 2 | wunrn |  |-  ( ph -> ran A e. U ) | 
						
							| 9 |  | rncoss |  |-  ran ( A o. B ) C_ ran A | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ran ( A o. B ) C_ ran A ) | 
						
							| 11 | 1 8 10 | wunss |  |-  ( ph -> ran ( A o. B ) e. U ) | 
						
							| 12 | 1 7 11 | wunxp |  |-  ( ph -> ( dom ( A o. B ) X. ran ( A o. B ) ) e. U ) | 
						
							| 13 |  | relco |  |-  Rel ( A o. B ) | 
						
							| 14 |  | relssdmrn |  |-  ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) | 
						
							| 15 | 13 14 | mp1i |  |-  ( ph -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) | 
						
							| 16 | 1 12 15 | wunss |  |-  ( ph -> ( A o. B ) e. U ) |