Metamath Proof Explorer


Theorem wuncss

Description: The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncss
|- ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) C_ U )

Proof

Step Hyp Ref Expression
1 ssexg
 |-  ( ( A C_ U /\ U e. WUni ) -> A e. _V )
2 1 ancoms
 |-  ( ( U e. WUni /\ A C_ U ) -> A e. _V )
3 wuncval
 |-  ( A e. _V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } )
4 2 3 syl
 |-  ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } )
5 sseq2
 |-  ( u = U -> ( A C_ u <-> A C_ U ) )
6 5 intminss
 |-  ( ( U e. WUni /\ A C_ U ) -> |^| { u e. WUni | A C_ u } C_ U )
7 4 6 eqsstrd
 |-  ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) C_ U )