Metamath Proof Explorer


Theorem wunelss

Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1
|- ( ph -> U e. WUni )
wununi.2
|- ( ph -> A e. U )
Assertion wunelss
|- ( ph -> A C_ U )

Proof

Step Hyp Ref Expression
1 wununi.1
 |-  ( ph -> U e. WUni )
2 wununi.2
 |-  ( ph -> A e. U )
3 wuntr
 |-  ( U e. WUni -> Tr U )
4 1 3 syl
 |-  ( ph -> Tr U )
5 trss
 |-  ( Tr U -> ( A e. U -> A C_ U ) )
6 4 2 5 sylc
 |-  ( ph -> A C_ U )