Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) = ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) |
2 |
|
eqid |
|- U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) = U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) |
3 |
1 2
|
wunex2 |
|- ( A e. V -> ( U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) e. WUni /\ A C_ U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) ) ) |
4 |
|
sseq2 |
|- ( u = U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) -> ( A C_ u <-> A C_ U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) ) ) |
5 |
4
|
rspcev |
|- ( ( U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) e. WUni /\ A C_ U. ran ( rec ( ( z e. _V |-> ( ( z u. U. z ) u. U_ x e. z ( { ~P x , U. x } u. ran ( y e. z |-> { x , y } ) ) ) ) , ( A u. 1o ) ) |` _om ) ) -> E. u e. WUni A C_ u ) |
6 |
3 5
|
syl |
|- ( A e. V -> E. u e. WUni A C_ u ) |