Step |
Hyp |
Ref |
Expression |
1 |
|
wunex3.u |
|- U = ( R1 ` ( ( rank ` A ) +o _om ) ) |
2 |
|
r1rankid |
|- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |
3 |
|
rankon |
|- ( rank ` A ) e. On |
4 |
|
omelon |
|- _om e. On |
5 |
|
oacl |
|- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( ( rank ` A ) +o _om ) e. On ) |
6 |
3 4 5
|
mp2an |
|- ( ( rank ` A ) +o _om ) e. On |
7 |
|
peano1 |
|- (/) e. _om |
8 |
|
oaord1 |
|- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) ) |
9 |
3 4 8
|
mp2an |
|- ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) |
10 |
7 9
|
mpbi |
|- ( rank ` A ) e. ( ( rank ` A ) +o _om ) |
11 |
|
r1ord2 |
|- ( ( ( rank ` A ) +o _om ) e. On -> ( ( rank ` A ) e. ( ( rank ` A ) +o _om ) -> ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) ) ) |
12 |
6 10 11
|
mp2 |
|- ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) |
13 |
12 1
|
sseqtrri |
|- ( R1 ` ( rank ` A ) ) C_ U |
14 |
2 13
|
sstrdi |
|- ( A e. V -> A C_ U ) |
15 |
|
limom |
|- Lim _om |
16 |
4 15
|
pm3.2i |
|- ( _om e. On /\ Lim _om ) |
17 |
|
oalimcl |
|- ( ( ( rank ` A ) e. On /\ ( _om e. On /\ Lim _om ) ) -> Lim ( ( rank ` A ) +o _om ) ) |
18 |
3 16 17
|
mp2an |
|- Lim ( ( rank ` A ) +o _om ) |
19 |
|
r1limwun |
|- ( ( ( ( rank ` A ) +o _om ) e. On /\ Lim ( ( rank ` A ) +o _om ) ) -> ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni ) |
20 |
6 18 19
|
mp2an |
|- ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni |
21 |
1 20
|
eqeltri |
|- U e. WUni |
22 |
14 21
|
jctil |
|- ( A e. V -> ( U e. WUni /\ A C_ U ) ) |