Step |
Hyp |
Ref |
Expression |
1 |
|
wunfunc.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wunfunc.2 |
|- ( ph -> C e. U ) |
3 |
|
wunfunc.3 |
|- ( ph -> D e. U ) |
4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
5 |
4 1 3
|
wunstr |
|- ( ph -> ( Base ` D ) e. U ) |
6 |
4 1 2
|
wunstr |
|- ( ph -> ( Base ` C ) e. U ) |
7 |
1 5 6
|
wunmap |
|- ( ph -> ( ( Base ` D ) ^m ( Base ` C ) ) e. U ) |
8 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
9 |
8 1 2
|
wunstr |
|- ( ph -> ( Hom ` C ) e. U ) |
10 |
1 9
|
wunrn |
|- ( ph -> ran ( Hom ` C ) e. U ) |
11 |
1 10
|
wununi |
|- ( ph -> U. ran ( Hom ` C ) e. U ) |
12 |
8 1 3
|
wunstr |
|- ( ph -> ( Hom ` D ) e. U ) |
13 |
1 12
|
wunrn |
|- ( ph -> ran ( Hom ` D ) e. U ) |
14 |
1 13
|
wununi |
|- ( ph -> U. ran ( Hom ` D ) e. U ) |
15 |
1 11 14
|
wunxp |
|- ( ph -> ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. U ) |
16 |
1 15
|
wunpw |
|- ( ph -> ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. U ) |
17 |
1 6 6
|
wunxp |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) e. U ) |
18 |
1 16 17
|
wunmap |
|- ( ph -> ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) e. U ) |
19 |
1 7 18
|
wunxp |
|- ( ph -> ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) e. U ) |
20 |
|
relfunc |
|- Rel ( C Func D ) |
21 |
20
|
a1i |
|- ( ph -> Rel ( C Func D ) ) |
22 |
|
df-br |
|- ( f ( C Func D ) g <-> <. f , g >. e. ( C Func D ) ) |
23 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
24 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
25 |
|
simpr |
|- ( ( ph /\ f ( C Func D ) g ) -> f ( C Func D ) g ) |
26 |
23 24 25
|
funcf1 |
|- ( ( ph /\ f ( C Func D ) g ) -> f : ( Base ` C ) --> ( Base ` D ) ) |
27 |
|
fvex |
|- ( Base ` D ) e. _V |
28 |
|
fvex |
|- ( Base ` C ) e. _V |
29 |
27 28
|
elmap |
|- ( f e. ( ( Base ` D ) ^m ( Base ` C ) ) <-> f : ( Base ` C ) --> ( Base ` D ) ) |
30 |
26 29
|
sylibr |
|- ( ( ph /\ f ( C Func D ) g ) -> f e. ( ( Base ` D ) ^m ( Base ` C ) ) ) |
31 |
|
mapsspw |
|- ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) |
32 |
|
fvssunirn |
|- ( ( Hom ` C ) ` z ) C_ U. ran ( Hom ` C ) |
33 |
|
ovssunirn |
|- ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) C_ U. ran ( Hom ` D ) |
34 |
|
xpss12 |
|- ( ( ( ( Hom ` C ) ` z ) C_ U. ran ( Hom ` C ) /\ ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) C_ U. ran ( Hom ` D ) ) -> ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ) |
35 |
32 33 34
|
mp2an |
|- ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
36 |
35
|
sspwi |
|- ~P ( ( ( Hom ` C ) ` z ) X. ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
37 |
31 36
|
sstri |
|- ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
38 |
37
|
rgenw |
|- A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
39 |
|
ss2ixp |
|- ( A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) -> X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ) |
40 |
38 39
|
ax-mp |
|- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) |
41 |
28 28
|
xpex |
|- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
42 |
|
fvex |
|- ( Hom ` C ) e. _V |
43 |
42
|
rnex |
|- ran ( Hom ` C ) e. _V |
44 |
43
|
uniex |
|- U. ran ( Hom ` C ) e. _V |
45 |
|
fvex |
|- ( Hom ` D ) e. _V |
46 |
45
|
rnex |
|- ran ( Hom ` D ) e. _V |
47 |
46
|
uniex |
|- U. ran ( Hom ` D ) e. _V |
48 |
44 47
|
xpex |
|- ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. _V |
49 |
48
|
pwex |
|- ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) e. _V |
50 |
41 49
|
ixpconst |
|- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) = ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) |
51 |
40 50
|
sseqtri |
|- X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) C_ ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) |
52 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
53 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
54 |
23 52 53 25
|
funcixp |
|- ( ( ph /\ f ( C Func D ) g ) -> g e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` D ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
55 |
51 54
|
sselid |
|- ( ( ph /\ f ( C Func D ) g ) -> g e. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
56 |
30 55
|
opelxpd |
|- ( ( ph /\ f ( C Func D ) g ) -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
57 |
56
|
ex |
|- ( ph -> ( f ( C Func D ) g -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) ) |
58 |
22 57
|
syl5bir |
|- ( ph -> ( <. f , g >. e. ( C Func D ) -> <. f , g >. e. ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) ) |
59 |
21 58
|
relssdv |
|- ( ph -> ( C Func D ) C_ ( ( ( Base ` D ) ^m ( Base ` C ) ) X. ( ~P ( U. ran ( Hom ` C ) X. U. ran ( Hom ` D ) ) ^m ( ( Base ` C ) X. ( Base ` C ) ) ) ) ) |
60 |
1 19 59
|
wunss |
|- ( ph -> ( C Func D ) e. U ) |