Metamath Proof Explorer


Theorem wunfv

Description: A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
Assertion wunfv
|- ( ph -> ( A ` B ) e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 1 2 wunrn
 |-  ( ph -> ran A e. U )
4 1 3 wununi
 |-  ( ph -> U. ran A e. U )
5 fvssunirn
 |-  ( A ` B ) C_ U. ran A
6 5 a1i
 |-  ( ph -> ( A ` B ) C_ U. ran A )
7 1 4 6 wunss
 |-  ( ph -> ( A ` B ) e. U )