Metamath Proof Explorer


Theorem wunin

Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1
|- ( ph -> U e. WUni )
wununi.2
|- ( ph -> A e. U )
Assertion wunin
|- ( ph -> ( A i^i B ) e. U )

Proof

Step Hyp Ref Expression
1 wununi.1
 |-  ( ph -> U e. WUni )
2 wununi.2
 |-  ( ph -> A e. U )
3 inss1
 |-  ( A i^i B ) C_ A
4 3 a1i
 |-  ( ph -> ( A i^i B ) C_ A )
5 1 2 4 wunss
 |-  ( ph -> ( A i^i B ) e. U )