Metamath Proof Explorer


Theorem wunmap

Description: A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
wunop.3
|- ( ph -> B e. U )
Assertion wunmap
|- ( ph -> ( A ^m B ) e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 wunop.3
 |-  ( ph -> B e. U )
4 1 2 3 wunpm
 |-  ( ph -> ( A ^pm B ) e. U )
5 mapsspm
 |-  ( A ^m B ) C_ ( A ^pm B )
6 5 a1i
 |-  ( ph -> ( A ^m B ) C_ ( A ^pm B ) )
7 1 4 6 wunss
 |-  ( ph -> ( A ^m B ) e. U )