Metamath Proof Explorer


Theorem wunndx

Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunndx.1
|- ( ph -> U e. WUni )
wunndx.2
|- ( ph -> _om e. U )
Assertion wunndx
|- ( ph -> ndx e. U )

Proof

Step Hyp Ref Expression
1 wunndx.1
 |-  ( ph -> U e. WUni )
2 wunndx.2
 |-  ( ph -> _om e. U )
3 df-ndx
 |-  ndx = ( _I |` NN )
4 1 2 wuncn
 |-  ( ph -> CC e. U )
5 nnsscn
 |-  NN C_ CC
6 5 a1i
 |-  ( ph -> NN C_ CC )
7 1 4 6 wunss
 |-  ( ph -> NN e. U )
8 f1oi
 |-  ( _I |` NN ) : NN -1-1-onto-> NN
9 f1of
 |-  ( ( _I |` NN ) : NN -1-1-onto-> NN -> ( _I |` NN ) : NN --> NN )
10 8 9 mp1i
 |-  ( ph -> ( _I |` NN ) : NN --> NN )
11 1 7 7 10 wunf
 |-  ( ph -> ( _I |` NN ) e. U )
12 3 11 eqeltrid
 |-  ( ph -> ndx e. U )