Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
|- ( ph -> U e. WUni ) |
2 |
1
|
adantr |
|- ( ( ph /\ x e. _om ) -> U e. WUni ) |
3 |
1
|
wunr1om |
|- ( ph -> ( R1 " _om ) C_ U ) |
4 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
5 |
4
|
simpli |
|- Fun R1 |
6 |
4
|
simpri |
|- Lim dom R1 |
7 |
|
limomss |
|- ( Lim dom R1 -> _om C_ dom R1 ) |
8 |
6 7
|
ax-mp |
|- _om C_ dom R1 |
9 |
|
funimass4 |
|- ( ( Fun R1 /\ _om C_ dom R1 ) -> ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) ) |
10 |
5 8 9
|
mp2an |
|- ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) |
11 |
3 10
|
sylib |
|- ( ph -> A. x e. _om ( R1 ` x ) e. U ) |
12 |
11
|
r19.21bi |
|- ( ( ph /\ x e. _om ) -> ( R1 ` x ) e. U ) |
13 |
|
simpr |
|- ( ( ph /\ x e. _om ) -> x e. _om ) |
14 |
8 13
|
sselid |
|- ( ( ph /\ x e. _om ) -> x e. dom R1 ) |
15 |
|
onssr1 |
|- ( x e. dom R1 -> x C_ ( R1 ` x ) ) |
16 |
14 15
|
syl |
|- ( ( ph /\ x e. _om ) -> x C_ ( R1 ` x ) ) |
17 |
2 12 16
|
wunss |
|- ( ( ph /\ x e. _om ) -> x e. U ) |
18 |
17
|
ex |
|- ( ph -> ( x e. _om -> x e. U ) ) |
19 |
18
|
ssrdv |
|- ( ph -> _om C_ U ) |