| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 |  |-  ( ph -> U e. WUni ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ph /\ x e. _om ) -> U e. WUni ) | 
						
							| 3 | 1 | wunr1om |  |-  ( ph -> ( R1 " _om ) C_ U ) | 
						
							| 4 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 5 | 4 | simpli |  |-  Fun R1 | 
						
							| 6 | 4 | simpri |  |-  Lim dom R1 | 
						
							| 7 |  | limomss |  |-  ( Lim dom R1 -> _om C_ dom R1 ) | 
						
							| 8 | 6 7 | ax-mp |  |-  _om C_ dom R1 | 
						
							| 9 |  | funimass4 |  |-  ( ( Fun R1 /\ _om C_ dom R1 ) -> ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) ) | 
						
							| 10 | 5 8 9 | mp2an |  |-  ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) | 
						
							| 11 | 3 10 | sylib |  |-  ( ph -> A. x e. _om ( R1 ` x ) e. U ) | 
						
							| 12 | 11 | r19.21bi |  |-  ( ( ph /\ x e. _om ) -> ( R1 ` x ) e. U ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ x e. _om ) -> x e. _om ) | 
						
							| 14 | 8 13 | sselid |  |-  ( ( ph /\ x e. _om ) -> x e. dom R1 ) | 
						
							| 15 |  | onssr1 |  |-  ( x e. dom R1 -> x C_ ( R1 ` x ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ph /\ x e. _om ) -> x C_ ( R1 ` x ) ) | 
						
							| 17 | 2 12 16 | wunss |  |-  ( ( ph /\ x e. _om ) -> x e. U ) | 
						
							| 18 | 17 | ex |  |-  ( ph -> ( x e. _om -> x e. U ) ) | 
						
							| 19 | 18 | ssrdv |  |-  ( ph -> _om C_ U ) |