Metamath Proof Explorer


Theorem wunop

Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
wunop.3
|- ( ph -> B e. U )
Assertion wunop
|- ( ph -> <. A , B >. e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 wunop.3
 |-  ( ph -> B e. U )
4 dfopg
 |-  ( ( A e. U /\ B e. U ) -> <. A , B >. = { { A } , { A , B } } )
5 2 3 4 syl2anc
 |-  ( ph -> <. A , B >. = { { A } , { A , B } } )
6 1 2 wunsn
 |-  ( ph -> { A } e. U )
7 1 2 3 wunpr
 |-  ( ph -> { A , B } e. U )
8 1 6 7 wunpr
 |-  ( ph -> { { A } , { A , B } } e. U )
9 5 8 eqeltrd
 |-  ( ph -> <. A , B >. e. U )