Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wun0.1 | |- ( ph -> U e. WUni ) |
|
| wunop.2 | |- ( ph -> A e. U ) |
||
| wunop.3 | |- ( ph -> B e. U ) |
||
| Assertion | wunop | |- ( ph -> <. A , B >. e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wunop.2 | |- ( ph -> A e. U ) |
|
| 3 | wunop.3 | |- ( ph -> B e. U ) |
|
| 4 | dfopg | |- ( ( A e. U /\ B e. U ) -> <. A , B >. = { { A } , { A , B } } ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ph -> <. A , B >. = { { A } , { A , B } } ) |
| 6 | 1 2 | wunsn | |- ( ph -> { A } e. U ) |
| 7 | 1 2 3 | wunpr | |- ( ph -> { A , B } e. U ) |
| 8 | 1 6 7 | wunpr | |- ( ph -> { { A } , { A , B } } e. U ) |
| 9 | 5 8 | eqeltrd | |- ( ph -> <. A , B >. e. U ) |