Metamath Proof Explorer


Theorem wunot

Description: A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
wunop.3
|- ( ph -> B e. U )
wunot.3
|- ( ph -> C e. U )
Assertion wunot
|- ( ph -> <. A , B , C >. e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 wunop.3
 |-  ( ph -> B e. U )
4 wunot.3
 |-  ( ph -> C e. U )
5 df-ot
 |-  <. A , B , C >. = <. <. A , B >. , C >.
6 1 2 3 wunop
 |-  ( ph -> <. A , B >. e. U )
7 1 6 4 wunop
 |-  ( ph -> <. <. A , B >. , C >. e. U )
8 5 7 eqeltrid
 |-  ( ph -> <. A , B , C >. e. U )