Metamath Proof Explorer


Theorem wunpm

Description: A weak universe is closed under partial mappings. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
wunop.3
|- ( ph -> B e. U )
Assertion wunpm
|- ( ph -> ( A ^pm B ) e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 wunop.3
 |-  ( ph -> B e. U )
4 1 3 2 wunxp
 |-  ( ph -> ( B X. A ) e. U )
5 1 4 wunpw
 |-  ( ph -> ~P ( B X. A ) e. U )
6 pmsspw
 |-  ( A ^pm B ) C_ ~P ( B X. A )
7 6 a1i
 |-  ( ph -> ( A ^pm B ) C_ ~P ( B X. A ) )
8 1 5 7 wunss
 |-  ( ph -> ( A ^pm B ) e. U )