Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
|- ( ph -> U e. WUni ) |
2 |
|
fveq2 |
|- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
3 |
2
|
eleq1d |
|- ( x = (/) -> ( ( R1 ` x ) e. U <-> ( R1 ` (/) ) e. U ) ) |
4 |
|
fveq2 |
|- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
5 |
4
|
eleq1d |
|- ( x = y -> ( ( R1 ` x ) e. U <-> ( R1 ` y ) e. U ) ) |
6 |
|
fveq2 |
|- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
7 |
6
|
eleq1d |
|- ( x = suc y -> ( ( R1 ` x ) e. U <-> ( R1 ` suc y ) e. U ) ) |
8 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
9 |
1
|
wun0 |
|- ( ph -> (/) e. U ) |
10 |
8 9
|
eqeltrid |
|- ( ph -> ( R1 ` (/) ) e. U ) |
11 |
1
|
adantr |
|- ( ( ph /\ ( R1 ` y ) e. U ) -> U e. WUni ) |
12 |
|
simpr |
|- ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` y ) e. U ) |
13 |
11 12
|
wunpw |
|- ( ( ph /\ ( R1 ` y ) e. U ) -> ~P ( R1 ` y ) e. U ) |
14 |
|
nnon |
|- ( y e. _om -> y e. On ) |
15 |
|
r1suc |
|- ( y e. On -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
16 |
14 15
|
syl |
|- ( y e. _om -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
17 |
16
|
eleq1d |
|- ( y e. _om -> ( ( R1 ` suc y ) e. U <-> ~P ( R1 ` y ) e. U ) ) |
18 |
13 17
|
syl5ibr |
|- ( y e. _om -> ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` suc y ) e. U ) ) |
19 |
18
|
expd |
|- ( y e. _om -> ( ph -> ( ( R1 ` y ) e. U -> ( R1 ` suc y ) e. U ) ) ) |
20 |
3 5 7 10 19
|
finds2 |
|- ( x e. _om -> ( ph -> ( R1 ` x ) e. U ) ) |
21 |
|
eleq1 |
|- ( ( R1 ` x ) = y -> ( ( R1 ` x ) e. U <-> y e. U ) ) |
22 |
21
|
imbi2d |
|- ( ( R1 ` x ) = y -> ( ( ph -> ( R1 ` x ) e. U ) <-> ( ph -> y e. U ) ) ) |
23 |
20 22
|
syl5ibcom |
|- ( x e. _om -> ( ( R1 ` x ) = y -> ( ph -> y e. U ) ) ) |
24 |
23
|
rexlimiv |
|- ( E. x e. _om ( R1 ` x ) = y -> ( ph -> y e. U ) ) |
25 |
|
r1fnon |
|- R1 Fn On |
26 |
|
fnfun |
|- ( R1 Fn On -> Fun R1 ) |
27 |
25 26
|
ax-mp |
|- Fun R1 |
28 |
|
fvelima |
|- ( ( Fun R1 /\ y e. ( R1 " _om ) ) -> E. x e. _om ( R1 ` x ) = y ) |
29 |
27 28
|
mpan |
|- ( y e. ( R1 " _om ) -> E. x e. _om ( R1 ` x ) = y ) |
30 |
24 29
|
syl11 |
|- ( ph -> ( y e. ( R1 " _om ) -> y e. U ) ) |
31 |
30
|
ssrdv |
|- ( ph -> ( R1 " _om ) C_ U ) |