Metamath Proof Explorer


Theorem wunres

Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
Assertion wunres
|- ( ph -> ( A |` B ) e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 resss
 |-  ( A |` B ) C_ A
4 3 a1i
 |-  ( ph -> ( A |` B ) C_ A )
5 1 2 4 wunss
 |-  ( ph -> ( A |` B ) e. U )