Metamath Proof Explorer


Theorem wunrn

Description: A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
Assertion wunrn
|- ( ph -> ran A e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 1 2 wununi
 |-  ( ph -> U. A e. U )
4 1 3 wununi
 |-  ( ph -> U. U. A e. U )
5 ssun2
 |-  ran A C_ ( dom A u. ran A )
6 dmrnssfld
 |-  ( dom A u. ran A ) C_ U. U. A
7 5 6 sstri
 |-  ran A C_ U. U. A
8 7 a1i
 |-  ( ph -> ran A C_ U. U. A )
9 1 4 8 wunss
 |-  ( ph -> ran A e. U )