Metamath Proof Explorer


Theorem wunsets

Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunsets.1
|- ( ph -> U e. WUni )
wunsets.2
|- ( ph -> S e. U )
wunsets.3
|- ( ph -> A e. U )
Assertion wunsets
|- ( ph -> ( S sSet A ) e. U )

Proof

Step Hyp Ref Expression
1 wunsets.1
 |-  ( ph -> U e. WUni )
2 wunsets.2
 |-  ( ph -> S e. U )
3 wunsets.3
 |-  ( ph -> A e. U )
4 setsvalg
 |-  ( ( S e. U /\ A e. U ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) )
5 2 3 4 syl2anc
 |-  ( ph -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) )
6 1 2 wunres
 |-  ( ph -> ( S |` ( _V \ dom { A } ) ) e. U )
7 1 3 wunsn
 |-  ( ph -> { A } e. U )
8 1 6 7 wunun
 |-  ( ph -> ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. U )
9 5 8 eqeltrd
 |-  ( ph -> ( S sSet A ) e. U )