Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunsets.1 | |- ( ph -> U e. WUni ) | |
| wunsets.2 | |- ( ph -> S e. U ) | ||
| wunsets.3 | |- ( ph -> A e. U ) | ||
| Assertion | wunsets | |- ( ph -> ( S sSet A ) e. U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wunsets.1 | |- ( ph -> U e. WUni ) | |
| 2 | wunsets.2 | |- ( ph -> S e. U ) | |
| 3 | wunsets.3 | |- ( ph -> A e. U ) | |
| 4 | setsvalg |  |-  ( ( S e. U /\ A e. U ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) | |
| 5 | 2 3 4 | syl2anc |  |-  ( ph -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) | 
| 6 | 1 2 | wunres |  |-  ( ph -> ( S |` ( _V \ dom { A } ) ) e. U ) | 
| 7 | 1 3 | wunsn |  |-  ( ph -> { A } e. U ) | 
| 8 | 1 6 7 | wunun |  |-  ( ph -> ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. U ) | 
| 9 | 5 8 | eqeltrd | |- ( ph -> ( S sSet A ) e. U ) |