Metamath Proof Explorer


Theorem wunsn

Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1
|- ( ph -> U e. WUni )
wununi.2
|- ( ph -> A e. U )
Assertion wunsn
|- ( ph -> { A } e. U )

Proof

Step Hyp Ref Expression
1 wununi.1
 |-  ( ph -> U e. WUni )
2 wununi.2
 |-  ( ph -> A e. U )
3 dfsn2
 |-  { A } = { A , A }
4 1 2 2 wunpr
 |-  ( ph -> { A , A } e. U )
5 3 4 eqeltrid
 |-  ( ph -> { A } e. U )