Metamath Proof Explorer
Description: A weak universe is closed under subsets. (Contributed by Mario
Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wununi.1 |
|- ( ph -> U e. WUni ) |
|
|
wununi.2 |
|- ( ph -> A e. U ) |
|
|
wunss.3 |
|- ( ph -> B C_ A ) |
|
Assertion |
wunss |
|- ( ph -> B e. U ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wununi.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wununi.2 |
|- ( ph -> A e. U ) |
3 |
|
wunss.3 |
|- ( ph -> B C_ A ) |
4 |
1 2
|
wunpw |
|- ( ph -> ~P A e. U ) |
5 |
1 4
|
wunelss |
|- ( ph -> ~P A C_ U ) |
6 |
2 3
|
sselpwd |
|- ( ph -> B e. ~P A ) |
7 |
5 6
|
sseldd |
|- ( ph -> B e. U ) |