Metamath Proof Explorer


Theorem wunstr

Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses strfvss.e
|- E = Slot N
wunstr.u
|- ( ph -> U e. WUni )
wunstr.s
|- ( ph -> S e. U )
Assertion wunstr
|- ( ph -> ( E ` S ) e. U )

Proof

Step Hyp Ref Expression
1 strfvss.e
 |-  E = Slot N
2 wunstr.u
 |-  ( ph -> U e. WUni )
3 wunstr.s
 |-  ( ph -> S e. U )
4 2 3 wunrn
 |-  ( ph -> ran S e. U )
5 2 4 wununi
 |-  ( ph -> U. ran S e. U )
6 1 strfvss
 |-  ( E ` S ) C_ U. ran S
7 6 a1i
 |-  ( ph -> ( E ` S ) C_ U. ran S )
8 2 5 7 wunss
 |-  ( ph -> ( E ` S ) e. U )