Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | |- ( ph -> U e. WUni ) | |
| wununi.2 | |- ( ph -> A e. U ) | ||
| wunpr.3 | |- ( ph -> B e. U ) | ||
| wuntp.3 | |- ( ph -> C e. U ) | ||
| Assertion | wuntp | |- ( ph -> { A , B , C } e. U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wununi.1 | |- ( ph -> U e. WUni ) | |
| 2 | wununi.2 | |- ( ph -> A e. U ) | |
| 3 | wunpr.3 | |- ( ph -> B e. U ) | |
| 4 | wuntp.3 | |- ( ph -> C e. U ) | |
| 5 | tpass |  |-  { A , B , C } = ( { A } u. { B , C } ) | |
| 6 | dfsn2 |  |-  { A } = { A , A } | |
| 7 | 1 2 2 | wunpr |  |-  ( ph -> { A , A } e. U ) | 
| 8 | 6 7 | eqeltrid |  |-  ( ph -> { A } e. U ) | 
| 9 | 1 3 4 | wunpr |  |-  ( ph -> { B , C } e. U ) | 
| 10 | 1 8 9 | wunun |  |-  ( ph -> ( { A } u. { B , C } ) e. U ) | 
| 11 | 5 10 | eqeltrid |  |-  ( ph -> { A , B , C } e. U ) |