Metamath Proof Explorer


Theorem wuntp

Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1
|- ( ph -> U e. WUni )
wununi.2
|- ( ph -> A e. U )
wunpr.3
|- ( ph -> B e. U )
wuntp.3
|- ( ph -> C e. U )
Assertion wuntp
|- ( ph -> { A , B , C } e. U )

Proof

Step Hyp Ref Expression
1 wununi.1
 |-  ( ph -> U e. WUni )
2 wununi.2
 |-  ( ph -> A e. U )
3 wunpr.3
 |-  ( ph -> B e. U )
4 wuntp.3
 |-  ( ph -> C e. U )
5 tpass
 |-  { A , B , C } = ( { A } u. { B , C } )
6 dfsn2
 |-  { A } = { A , A }
7 1 2 2 wunpr
 |-  ( ph -> { A , A } e. U )
8 6 7 eqeltrid
 |-  ( ph -> { A } e. U )
9 1 3 4 wunpr
 |-  ( ph -> { B , C } e. U )
10 1 8 9 wunun
 |-  ( ph -> ( { A } u. { B , C } ) e. U )
11 5 10 eqeltrid
 |-  ( ph -> { A , B , C } e. U )