Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wunop.2 |
|- ( ph -> A e. U ) |
3 |
1 2
|
wundm |
|- ( ph -> dom A e. U ) |
4 |
1 3
|
wuncnv |
|- ( ph -> `' dom A e. U ) |
5 |
1
|
wun0 |
|- ( ph -> (/) e. U ) |
6 |
1 5
|
wunsn |
|- ( ph -> { (/) } e. U ) |
7 |
1 4 6
|
wunun |
|- ( ph -> ( `' dom A u. { (/) } ) e. U ) |
8 |
1 2
|
wunrn |
|- ( ph -> ran A e. U ) |
9 |
1 7 8
|
wunxp |
|- ( ph -> ( ( `' dom A u. { (/) } ) X. ran A ) e. U ) |
10 |
|
tposssxp |
|- tpos A C_ ( ( `' dom A u. { (/) } ) X. ran A ) |
11 |
10
|
a1i |
|- ( ph -> tpos A C_ ( ( `' dom A u. { (/) } ) X. ran A ) ) |
12 |
1 9 11
|
wunss |
|- ( ph -> tpos A e. U ) |