Metamath Proof Explorer


Theorem wuntpos

Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
Assertion wuntpos
|- ( ph -> tpos A e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 1 2 wundm
 |-  ( ph -> dom A e. U )
4 1 3 wuncnv
 |-  ( ph -> `' dom A e. U )
5 1 wun0
 |-  ( ph -> (/) e. U )
6 1 5 wunsn
 |-  ( ph -> { (/) } e. U )
7 1 4 6 wunun
 |-  ( ph -> ( `' dom A u. { (/) } ) e. U )
8 1 2 wunrn
 |-  ( ph -> ran A e. U )
9 1 7 8 wunxp
 |-  ( ph -> ( ( `' dom A u. { (/) } ) X. ran A ) e. U )
10 tposssxp
 |-  tpos A C_ ( ( `' dom A u. { (/) } ) X. ran A )
11 10 a1i
 |-  ( ph -> tpos A C_ ( ( `' dom A u. { (/) } ) X. ran A ) )
12 1 9 11 wunss
 |-  ( ph -> tpos A e. U )