Metamath Proof Explorer


Theorem wuntr

Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuntr
|- ( U e. WUni -> Tr U )

Proof

Step Hyp Ref Expression
1 iswun
 |-  ( U e. WUni -> ( U e. WUni <-> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) )
2 1 ibi
 |-  ( U e. WUni -> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) )
3 2 simp1d
 |-  ( U e. WUni -> Tr U )