Metamath Proof Explorer


Theorem wunun

Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1
|- ( ph -> U e. WUni )
wununi.2
|- ( ph -> A e. U )
wunpr.3
|- ( ph -> B e. U )
Assertion wunun
|- ( ph -> ( A u. B ) e. U )

Proof

Step Hyp Ref Expression
1 wununi.1
 |-  ( ph -> U e. WUni )
2 wununi.2
 |-  ( ph -> A e. U )
3 wunpr.3
 |-  ( ph -> B e. U )
4 uniprg
 |-  ( ( A e. U /\ B e. U ) -> U. { A , B } = ( A u. B ) )
5 2 3 4 syl2anc
 |-  ( ph -> U. { A , B } = ( A u. B ) )
6 1 2 3 wunpr
 |-  ( ph -> { A , B } e. U )
7 1 6 wununi
 |-  ( ph -> U. { A , B } e. U )
8 5 7 eqeltrrd
 |-  ( ph -> ( A u. B ) e. U )