Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | |- ( ph -> U e. WUni ) |
|
| wununi.2 | |- ( ph -> A e. U ) |
||
| wunpr.3 | |- ( ph -> B e. U ) |
||
| Assertion | wunun | |- ( ph -> ( A u. B ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wununi.2 | |- ( ph -> A e. U ) |
|
| 3 | wunpr.3 | |- ( ph -> B e. U ) |
|
| 4 | uniprg | |- ( ( A e. U /\ B e. U ) -> U. { A , B } = ( A u. B ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ph -> U. { A , B } = ( A u. B ) ) |
| 6 | 1 2 3 | wunpr | |- ( ph -> { A , B } e. U ) |
| 7 | 1 6 | wununi | |- ( ph -> U. { A , B } e. U ) |
| 8 | 5 7 | eqeltrrd | |- ( ph -> ( A u. B ) e. U ) |