Description: Basic properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 9-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wwlkbp.v | |- V = ( Vtx ` G ) |
|
Assertion | wwlkbp | |- ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlkbp.v | |- V = ( Vtx ` G ) |
|
2 | elfvex | |- ( W e. ( WWalks ` G ) -> G e. _V ) |
|
3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
4 | 1 3 | iswwlks | |- ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
5 | 4 | simp2bi | |- ( W e. ( WWalks ` G ) -> W e. Word V ) |
6 | 2 5 | jca | |- ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) ) |