Metamath Proof Explorer


Theorem wwlkbp

Description: Basic properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 9-Apr-2021)

Ref Expression
Hypothesis wwlkbp.v
|- V = ( Vtx ` G )
Assertion wwlkbp
|- ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) )

Proof

Step Hyp Ref Expression
1 wwlkbp.v
 |-  V = ( Vtx ` G )
2 elfvex
 |-  ( W e. ( WWalks ` G ) -> G e. _V )
3 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
4 1 3 iswwlks
 |-  ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) )
5 4 simp2bi
 |-  ( W e. ( WWalks ` G ) -> W e. Word V )
6 2 5 jca
 |-  ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) )