| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlkbp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | df-wwlksn |  |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
						
							| 3 | 2 | elmpocl |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ G e. _V ) ) | 
						
							| 4 |  | simpl |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( N e. NN0 /\ G e. _V ) ) | 
						
							| 5 | 4 | ancomd |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( G e. _V /\ N e. NN0 ) ) | 
						
							| 6 |  | iswwlksn |  |-  ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) | 
						
							| 8 | 1 | wwlkbp |  |-  ( W e. ( WWalks ` G ) -> ( G e. _V /\ W e. Word V ) ) | 
						
							| 9 | 8 | simprd |  |-  ( W e. ( WWalks ` G ) -> W e. Word V ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> W e. Word V ) | 
						
							| 11 | 7 10 | biimtrdi |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WWalksN G ) -> W e. Word V ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> W e. Word V ) | 
						
							| 13 |  | df-3an |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) <-> ( ( G e. _V /\ N e. NN0 ) /\ W e. Word V ) ) | 
						
							| 14 | 5 12 13 | sylanbrc |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) | 
						
							| 15 | 3 14 | mpancom |  |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |