Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wwlknbp |
|- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) ) |
3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
4 |
1 3
|
wwlknp |
|- ( W e. ( N WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
5 |
|
simpl |
|- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> N e. NN0 ) |
6 |
|
simpr1 |
|- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> W e. Word ( Vtx ` G ) ) |
7 |
|
simpr2 |
|- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( # ` W ) = ( N + 1 ) ) |
8 |
5 6 7
|
3jca |
|- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
9 |
8
|
ex |
|- ( N e. NN0 -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
11 |
2 4 10
|
sylc |
|- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |