| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknllvtx.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlknbp1 |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) | 
						
							| 3 |  | wwlknvtx |  |-  ( W e. ( N WWalksN G ) -> A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) ) | 
						
							| 4 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = 0 -> ( W ` x ) = ( W ` 0 ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( x = 0 -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( N e. NN0 /\ x = 0 ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) | 
						
							| 8 | 4 7 | rspcdv |  |-  ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` 0 ) e. ( Vtx ` G ) ) ) | 
						
							| 9 |  | nn0fz0 |  |-  ( N e. NN0 <-> N e. ( 0 ... N ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( N e. NN0 -> N e. ( 0 ... N ) ) | 
						
							| 11 |  | fveq2 |  |-  ( x = N -> ( W ` x ) = ( W ` N ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( x = N -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( N e. NN0 /\ x = N ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) | 
						
							| 14 | 10 13 | rspcdv |  |-  ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` N ) e. ( Vtx ` G ) ) ) | 
						
							| 15 | 8 14 | jcad |  |-  ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) | 
						
							| 17 | 2 3 16 | sylc |  |-  ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) | 
						
							| 18 | 1 | eleq2i |  |-  ( ( W ` 0 ) e. V <-> ( W ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 19 | 1 | eleq2i |  |-  ( ( W ` N ) e. V <-> ( W ` N ) e. ( Vtx ` G ) ) | 
						
							| 20 | 18 19 | anbi12i |  |-  ( ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) <-> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) | 
						
							| 21 | 17 20 | sylibr |  |-  ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) ) |