Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknllvtx.v |
|- V = ( Vtx ` G ) |
2 |
|
wwlknbp1 |
|- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
3 |
|
wwlknvtx |
|- ( W e. ( N WWalksN G ) -> A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) ) |
4 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
5 |
|
fveq2 |
|- ( x = 0 -> ( W ` x ) = ( W ` 0 ) ) |
6 |
5
|
eleq1d |
|- ( x = 0 -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
7 |
6
|
adantl |
|- ( ( N e. NN0 /\ x = 0 ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
8 |
4 7
|
rspcdv |
|- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
9 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
10 |
9
|
biimpi |
|- ( N e. NN0 -> N e. ( 0 ... N ) ) |
11 |
|
fveq2 |
|- ( x = N -> ( W ` x ) = ( W ` N ) ) |
12 |
11
|
eleq1d |
|- ( x = N -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) |
13 |
12
|
adantl |
|- ( ( N e. NN0 /\ x = N ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) |
14 |
10 13
|
rspcdv |
|- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` N ) e. ( Vtx ` G ) ) ) |
15 |
8 14
|
jcad |
|- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) |
17 |
2 3 16
|
sylc |
|- ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) |
18 |
1
|
eleq2i |
|- ( ( W ` 0 ) e. V <-> ( W ` 0 ) e. ( Vtx ` G ) ) |
19 |
1
|
eleq2i |
|- ( ( W ` N ) e. V <-> ( W ` N ) e. ( Vtx ` G ) ) |
20 |
18 19
|
anbi12i |
|- ( ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) <-> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) |
21 |
17 20
|
sylibr |
|- ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) ) |