Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknbp1 |
|- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
2 |
|
lsw |
|- ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
3 |
2
|
3ad2ant2 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
4 |
|
oveq1 |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
5 |
4
|
3ad2ant3 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
6 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
7 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
8 |
6 7
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
9 |
8
|
3ad2ant1 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) |
10 |
5 9
|
eqtrd |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = N ) |
11 |
10
|
fveq2d |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` N ) ) |
12 |
3 11
|
eqtr2d |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W ` N ) = ( lastS ` W ) ) |
13 |
1 12
|
syl |
|- ( W e. ( N WWalksN G ) -> ( W ` N ) = ( lastS ` W ) ) |