| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknbp1 |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) | 
						
							| 2 |  | simp2 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 3 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 4 |  | fzval3 |  |-  ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( N e. NN0 -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( i e. ( 0 ... N ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) | 
						
							| 8 | 7 | biimpa |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> i e. ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( ( # ` W ) = ( N + 1 ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ( # ` W ) = ( N + 1 ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) | 
						
							| 13 | 8 12 | mpbird |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 14 |  | wrdsymbcl |  |-  ( ( W e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. ( Vtx ` G ) ) | 
						
							| 15 | 2 13 14 | syl2an2r |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> ( W ` i ) e. ( Vtx ` G ) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> A. i e. ( 0 ... N ) ( W ` i ) e. ( Vtx ` G ) ) | 
						
							| 17 | 1 16 | syl |  |-  ( W e. ( N WWalksN G ) -> A. i e. ( 0 ... N ) ( W ` i ) e. ( Vtx ` G ) ) |