Step |
Hyp |
Ref |
Expression |
1 |
|
wwlks2onv.v |
|- V = ( Vtx ` G ) |
2 |
1
|
wwlksonvtx |
|- ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) -> ( A e. V /\ C e. V ) ) |
3 |
2
|
adantl |
|- ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> ( A e. V /\ C e. V ) ) |
4 |
|
simprl |
|- ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> A e. V ) |
5 |
|
wwlknon |
|- ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) |
6 |
|
wwlknbp1 |
|- ( <" A B C "> e. ( 2 WWalksN G ) -> ( 2 e. NN0 /\ <" A B C "> e. Word ( Vtx ` G ) /\ ( # ` <" A B C "> ) = ( 2 + 1 ) ) ) |
7 |
|
s3fv1 |
|- ( B e. U -> ( <" A B C "> ` 1 ) = B ) |
8 |
7
|
eqcomd |
|- ( B e. U -> B = ( <" A B C "> ` 1 ) ) |
9 |
8
|
adantl |
|- ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> B = ( <" A B C "> ` 1 ) ) |
10 |
1
|
eqcomi |
|- ( Vtx ` G ) = V |
11 |
10
|
wrdeqi |
|- Word ( Vtx ` G ) = Word V |
12 |
11
|
eleq2i |
|- ( <" A B C "> e. Word ( Vtx ` G ) <-> <" A B C "> e. Word V ) |
13 |
12
|
biimpi |
|- ( <" A B C "> e. Word ( Vtx ` G ) -> <" A B C "> e. Word V ) |
14 |
|
1ex |
|- 1 e. _V |
15 |
14
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
16 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
17 |
16
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ 3 ) |
18 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
19 |
17 18
|
eqtri |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = { 0 , 1 , 2 } |
20 |
15 19
|
eleqtrri |
|- 1 e. ( 0 ..^ ( # ` <" A B C "> ) ) |
21 |
|
wrdsymbcl |
|- ( ( <" A B C "> e. Word V /\ 1 e. ( 0 ..^ ( # ` <" A B C "> ) ) ) -> ( <" A B C "> ` 1 ) e. V ) |
22 |
13 20 21
|
sylancl |
|- ( <" A B C "> e. Word ( Vtx ` G ) -> ( <" A B C "> ` 1 ) e. V ) |
23 |
22
|
adantr |
|- ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> ( <" A B C "> ` 1 ) e. V ) |
24 |
9 23
|
eqeltrd |
|- ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> B e. V ) |
25 |
24
|
ex |
|- ( <" A B C "> e. Word ( Vtx ` G ) -> ( B e. U -> B e. V ) ) |
26 |
25
|
3ad2ant2 |
|- ( ( 2 e. NN0 /\ <" A B C "> e. Word ( Vtx ` G ) /\ ( # ` <" A B C "> ) = ( 2 + 1 ) ) -> ( B e. U -> B e. V ) ) |
27 |
6 26
|
syl |
|- ( <" A B C "> e. ( 2 WWalksN G ) -> ( B e. U -> B e. V ) ) |
28 |
27
|
3ad2ant1 |
|- ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) -> ( B e. U -> B e. V ) ) |
29 |
5 28
|
sylbi |
|- ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) -> ( B e. U -> B e. V ) ) |
30 |
29
|
impcom |
|- ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> B e. V ) |
31 |
30
|
adantr |
|- ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> B e. V ) |
32 |
|
simprr |
|- ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> C e. V ) |
33 |
4 31 32
|
3jca |
|- ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) |
34 |
3 33
|
mpdan |
|- ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) |