| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( g = G -> ( WWalks ` g ) = ( WWalks ` G ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( n = N /\ g = G ) -> ( WWalks ` g ) = ( WWalks ` G ) ) | 
						
							| 3 |  | oveq1 |  |-  ( n = N -> ( n + 1 ) = ( N + 1 ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( n = N -> ( ( # ` w ) = ( n + 1 ) <-> ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( n = N /\ g = G ) -> ( ( # ` w ) = ( n + 1 ) <-> ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 6 | 2 5 | rabeqbidv |  |-  ( ( n = N /\ g = G ) -> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 7 |  | df-wwlksn |  |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
						
							| 8 |  | fvex |  |-  ( WWalks ` G ) e. _V | 
						
							| 9 | 8 | rabex |  |-  { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } e. _V | 
						
							| 10 | 6 7 9 | ovmpoa |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 11 | 10 | expcom |  |-  ( G e. _V -> ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) ) | 
						
							| 12 | 7 | reldmmpo |  |-  Rel dom WWalksN | 
						
							| 13 | 12 | ovprc2 |  |-  ( -. G e. _V -> ( N WWalksN G ) = (/) ) | 
						
							| 14 |  | fvprc |  |-  ( -. G e. _V -> ( WWalks ` G ) = (/) ) | 
						
							| 15 | 14 | rabeqdv |  |-  ( -. G e. _V -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = { w e. (/) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 16 |  | rab0 |  |-  { w e. (/) | ( # ` w ) = ( N + 1 ) } = (/) | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( -. G e. _V -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) ) | 
						
							| 18 | 13 17 | eqtr4d |  |-  ( -. G e. _V -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 19 | 18 | a1d |  |-  ( -. G e. _V -> ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) ) | 
						
							| 20 | 11 19 | pm2.61i |  |-  ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |