| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|- 0 e. NN0 |
| 2 |
|
wwlksn |
|- ( 0 e. NN0 -> ( 0 WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( 0 + 1 ) } ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 5 |
3 4
|
iswwlks |
|- ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 6 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 7 |
6
|
eqeq2i |
|- ( ( # ` w ) = ( 0 + 1 ) <-> ( # ` w ) = 1 ) |
| 8 |
5 7
|
anbi12i |
|- ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 1 ) ) |
| 9 |
|
simp2 |
|- ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> w e. Word ( Vtx ` G ) ) |
| 10 |
|
vex |
|- w e. _V |
| 11 |
|
0lt1 |
|- 0 < 1 |
| 12 |
|
breq2 |
|- ( ( # ` w ) = 1 -> ( 0 < ( # ` w ) <-> 0 < 1 ) ) |
| 13 |
11 12
|
mpbiri |
|- ( ( # ` w ) = 1 -> 0 < ( # ` w ) ) |
| 14 |
|
hashgt0n0 |
|- ( ( w e. _V /\ 0 < ( # ` w ) ) -> w =/= (/) ) |
| 15 |
10 13 14
|
sylancr |
|- ( ( # ` w ) = 1 -> w =/= (/) ) |
| 16 |
15
|
adantr |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> w =/= (/) ) |
| 17 |
|
simpr |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> w e. Word ( Vtx ` G ) ) |
| 18 |
|
ral0 |
|- A. i e. (/) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) |
| 19 |
|
oveq1 |
|- ( ( # ` w ) = 1 -> ( ( # ` w ) - 1 ) = ( 1 - 1 ) ) |
| 20 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 21 |
19 20
|
eqtrdi |
|- ( ( # ` w ) = 1 -> ( ( # ` w ) - 1 ) = 0 ) |
| 22 |
21
|
oveq2d |
|- ( ( # ` w ) = 1 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 0 ) ) |
| 23 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 24 |
22 23
|
eqtrdi |
|- ( ( # ` w ) = 1 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = (/) ) |
| 25 |
24
|
raleqdv |
|- ( ( # ` w ) = 1 -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. (/) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 26 |
18 25
|
mpbiri |
|- ( ( # ` w ) = 1 -> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 27 |
26
|
adantr |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 28 |
16 17 27
|
3jca |
|- ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) ) -> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 29 |
28
|
ex |
|- ( ( # ` w ) = 1 -> ( w e. Word ( Vtx ` G ) -> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 30 |
9 29
|
impbid2 |
|- ( ( # ` w ) = 1 -> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> w e. Word ( Vtx ` G ) ) ) |
| 31 |
30
|
pm5.32ri |
|- ( ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 1 ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) |
| 32 |
8 31
|
bitri |
|- ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) |
| 33 |
32
|
a1i |
|- ( 0 e. NN0 -> ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 0 + 1 ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) ) |
| 34 |
33
|
rabbidva2 |
|- ( 0 e. NN0 -> { w e. ( WWalks ` G ) | ( # ` w ) = ( 0 + 1 ) } = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) |
| 35 |
2 34
|
eqtrd |
|- ( 0 e. NN0 -> ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) |
| 36 |
1 35
|
ax-mp |
|- ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } |