Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
|- V = ( Vtx ` G ) |
2 |
|
wwlksnextbij0.e |
|- E = ( Edg ` G ) |
3 |
|
wwlksnextbij0.d |
|- D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } |
4 |
|
wwlksnextbij0.r |
|- R = { n e. V | { ( lastS ` W ) , n } e. E } |
5 |
|
wwlksnextbij0.f |
|- F = ( t e. D |-> ( lastS ` t ) ) |
6 |
1
|
wwlknbp |
|- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |
7 |
1 2 3 4 5
|
wwlksnextinj |
|- ( N e. NN0 -> F : D -1-1-> R ) |
8 |
7
|
3ad2ant2 |
|- ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> F : D -1-1-> R ) |
9 |
6 8
|
syl |
|- ( W e. ( N WWalksN G ) -> F : D -1-1-> R ) |
10 |
1 2 3 4 5
|
wwlksnextsurj |
|- ( W e. ( N WWalksN G ) -> F : D -onto-> R ) |
11 |
|
df-f1o |
|- ( F : D -1-1-onto-> R <-> ( F : D -1-1-> R /\ F : D -onto-> R ) ) |
12 |
9 10 11
|
sylanbrc |
|- ( W e. ( N WWalksN G ) -> F : D -1-1-onto-> R ) |