Description: The number of the extensions of a walk (as word) by an edge equals the number of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 23-Aug-2018) (Revised by AV, 19-Apr-2021) (Revised by AV, 27-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wwlksnexthasheq.v | |- V = ( Vtx ` G ) |
|
wwlksnexthasheq.e | |- E = ( Edg ` G ) |
||
Assertion | wwlksnexthasheq | |- ( W e. ( N WWalksN G ) -> ( # ` { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) = ( # ` { n e. V | { ( lastS ` W ) , n } e. E } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnexthasheq.v | |- V = ( Vtx ` G ) |
|
2 | wwlksnexthasheq.e | |- E = ( Edg ` G ) |
|
3 | ovex | |- ( ( N + 1 ) WWalksN G ) e. _V |
|
4 | 3 | rabex | |- { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } e. _V |
5 | 1 2 | wwlksnextbij | |- ( W e. ( N WWalksN G ) -> E. f f : { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } -1-1-onto-> { n e. V | { ( lastS ` W ) , n } e. E } ) |
6 | hasheqf1oi | |- ( { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } e. _V -> ( E. f f : { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } -1-1-onto-> { n e. V | { ( lastS ` W ) , n } e. E } -> ( # ` { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) = ( # ` { n e. V | { ( lastS ` W ) , n } e. E } ) ) ) |
|
7 | 4 5 6 | mpsyl | |- ( W e. ( N WWalksN G ) -> ( # ` { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) = ( # ` { n e. V | { ( lastS ` W ) , n } e. E } ) ) |