| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlksnextprop.x |
|- X = ( ( N + 1 ) WWalksN G ) |
| 2 |
|
wwlknbp1 |
|- ( W e. ( ( N + 1 ) WWalksN G ) -> ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) ) |
| 3 |
|
simpl2 |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> W e. Word ( Vtx ` G ) ) |
| 4 |
|
peano2nn0 |
|- ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) + 1 ) e. NN0 ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( N + 1 ) + 1 ) e. NN0 ) |
| 6 |
|
eleq1 |
|- ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( # ` W ) e. NN0 <-> ( ( N + 1 ) + 1 ) e. NN0 ) ) |
| 7 |
6
|
3ad2ant3 |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( # ` W ) e. NN0 <-> ( ( N + 1 ) + 1 ) e. NN0 ) ) |
| 8 |
5 7
|
mpbird |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( # ` W ) e. NN0 ) |
| 9 |
8
|
adantr |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( # ` W ) e. NN0 ) |
| 10 |
|
simpr |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> N e. NN0 ) |
| 11 |
|
nn0re |
|- ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. RR ) |
| 12 |
11
|
lep1d |
|- ( ( N + 1 ) e. NN0 -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) |
| 14 |
|
breq2 |
|- ( ( # ` W ) = ( ( N + 1 ) + 1 ) -> ( ( N + 1 ) <_ ( # ` W ) <-> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( ( N + 1 ) <_ ( # ` W ) <-> ( N + 1 ) <_ ( ( N + 1 ) + 1 ) ) ) |
| 16 |
13 15
|
mpbird |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N + 1 ) <_ ( # ` W ) ) |
| 17 |
16
|
adantr |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) <_ ( # ` W ) ) |
| 18 |
|
nn0p1elfzo |
|- ( ( N e. NN0 /\ ( # ` W ) e. NN0 /\ ( N + 1 ) <_ ( # ` W ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) |
| 19 |
10 9 17 18
|
syl3anc |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> N e. ( 0 ..^ ( # ` W ) ) ) |
| 20 |
|
fz0add1fz1 |
|- ( ( ( # ` W ) e. NN0 /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) |
| 21 |
9 19 20
|
syl2anc |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) |
| 22 |
3 21
|
jca |
|- ( ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) /\ N e. NN0 ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) |
| 23 |
22
|
ex |
|- ( ( ( N + 1 ) e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( ( N + 1 ) + 1 ) ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) |
| 24 |
2 23
|
syl |
|- ( W e. ( ( N + 1 ) WWalksN G ) -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) |
| 25 |
24 1
|
eleq2s |
|- ( W e. X -> ( N e. NN0 -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) ) |
| 26 |
25
|
imp |
|- ( ( W e. X /\ N e. NN0 ) -> ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) ) |
| 27 |
|
pfxfv0 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( N + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) |
| 28 |
26 27
|
syl |
|- ( ( W e. X /\ N e. NN0 ) -> ( ( W prefix ( N + 1 ) ) ` 0 ) = ( W ` 0 ) ) |