| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wwlksnextbij0.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							wwlksnextbij0.e | 
							 |-  E = ( Edg ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							wwlksnextbij0.d | 
							 |-  D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } | 
						
						
							| 4 | 
							
								
							 | 
							wwlksnextbij0.r | 
							 |-  R = { n e. V | { ( lastS ` W ) , n } e. E } | 
						
						
							| 5 | 
							
								
							 | 
							wwlksnextbij0.f | 
							 |-  F = ( t e. D |-> ( lastS ` t ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							wwlknbp | 
							 |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> N e. NN0 )  | 
						
						
							| 8 | 
							
								1 2 3 4 5
							 | 
							wwlksnextfun | 
							 |-  ( N e. NN0 -> F : D --> R )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							3syl | 
							 |-  ( W e. ( N WWalksN G ) -> F : D --> R )  | 
						
						
							| 10 | 
							
								
							 | 
							preq2 | 
							 |-  ( n = r -> { ( lastS ` W ) , n } = { ( lastS ` W ) , r } ) | 
						
						
							| 11 | 
							
								10
							 | 
							eleq1d | 
							 |-  ( n = r -> ( { ( lastS ` W ) , n } e. E <-> { ( lastS ` W ) , r } e. E ) ) | 
						
						
							| 12 | 
							
								11 4
							 | 
							elrab2 | 
							 |-  ( r e. R <-> ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) | 
						
						
							| 13 | 
							
								1 2
							 | 
							wwlksnext | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. V /\ { ( lastS ` W ) , r } e. E ) -> ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) ) | 
						
						
							| 14 | 
							
								13
							 | 
							3expb | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) ) | 
						
						
							| 15 | 
							
								
							 | 
							s1cl | 
							 |-  ( r e. V -> <" r "> e. Word V )  | 
						
						
							| 16 | 
							
								
							 | 
							pfxccat1 | 
							 |-  ( ( W e. Word V /\ <" r "> e. Word V ) -> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylan2 | 
							 |-  ( ( W e. Word V /\ r e. V ) -> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							 |-  ( W e. Word V -> ( r e. V -> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) -> ( r e. V -> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W ) )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( N + 1 ) = ( # ` W ) -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = ( ( W ++ <" r "> ) prefix ( # ` W ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcoms | 
							 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = ( ( W ++ <" r "> ) prefix ( # ` W ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqeq1d | 
							 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W <-> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							 |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) -> ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W <-> ( ( W ++ <" r "> ) prefix ( # ` W ) ) = W ) )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							sylibrd | 
							 |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) -> ( r e. V -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							3adant3 | 
							 |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( r e. V -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) ) | 
						
						
							| 26 | 
							
								1 2
							 | 
							wwlknp | 
							 |-  ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl11 | 
							 |-  ( r e. V -> ( W e. ( N WWalksN G ) -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( r e. V /\ { ( lastS ` W ) , r } e. E ) -> ( W e. ( N WWalksN G ) -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) ) | 
						
						
							| 29 | 
							
								28
							 | 
							impcom | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) | 
						
						
							| 30 | 
							
								
							 | 
							lswccats1 | 
							 |-  ( ( W e. Word V /\ r e. V ) -> ( lastS ` ( W ++ <" r "> ) ) = r )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqcomd | 
							 |-  ( ( W e. Word V /\ r e. V ) -> r = ( lastS ` ( W ++ <" r "> ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ex | 
							 |-  ( W e. Word V -> ( r e. V -> r = ( lastS ` ( W ++ <" r "> ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant3 | 
							 |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( r e. V -> r = ( lastS ` ( W ++ <" r "> ) ) ) )  | 
						
						
							| 34 | 
							
								6 33
							 | 
							syl | 
							 |-  ( W e. ( N WWalksN G ) -> ( r e. V -> r = ( lastS ` ( W ++ <" r "> ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							imp | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. V ) -> r = ( lastS ` ( W ++ <" r "> ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							preq2d | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. V ) -> { ( lastS ` W ) , r } = { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } ) | 
						
						
							| 37 | 
							
								36
							 | 
							eleq1d | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. V ) -> ( { ( lastS ` W ) , r } e. E <-> { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) | 
						
						
							| 38 | 
							
								37
							 | 
							biimpd | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. V ) -> ( { ( lastS ` W ) , r } e. E -> { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) | 
						
						
							| 39 | 
							
								38
							 | 
							impr | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) | 
						
						
							| 40 | 
							
								14 29 39
							 | 
							jca32 | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) ) | 
						
						
							| 41 | 
							
								33 6
							 | 
							syl11 | 
							 |-  ( r e. V -> ( W e. ( N WWalksN G ) -> r = ( lastS ` ( W ++ <" r "> ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantr | 
							 |-  ( ( r e. V /\ { ( lastS ` W ) , r } e. E ) -> ( W e. ( N WWalksN G ) -> r = ( lastS ` ( W ++ <" r "> ) ) ) ) | 
						
						
							| 43 | 
							
								42
							 | 
							impcom | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> r = ( lastS ` ( W ++ <" r "> ) ) ) | 
						
						
							| 44 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> ( W ++ <" r "> ) e. _V ) | 
						
						
							| 45 | 
							
								
							 | 
							eleq1 | 
							 |-  ( d = ( W ++ <" r "> ) -> ( d e. ( ( N + 1 ) WWalksN G ) <-> ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							oveq1 | 
							 |-  ( d = ( W ++ <" r "> ) -> ( d prefix ( N + 1 ) ) = ( ( W ++ <" r "> ) prefix ( N + 1 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							eqeq1d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( ( d prefix ( N + 1 ) ) = W <-> ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W ) )  | 
						
						
							| 48 | 
							
								
							 | 
							fveq2 | 
							 |-  ( d = ( W ++ <" r "> ) -> ( lastS ` d ) = ( lastS ` ( W ++ <" r "> ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							preq2d | 
							 |-  ( d = ( W ++ <" r "> ) -> { ( lastS ` W ) , ( lastS ` d ) } = { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } ) | 
						
						
							| 50 | 
							
								49
							 | 
							eleq1d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( { ( lastS ` W ) , ( lastS ` d ) } e. E <-> { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) | 
						
						
							| 51 | 
							
								47 50
							 | 
							anbi12d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) <-> ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) ) | 
						
						
							| 52 | 
							
								45 51
							 | 
							anbi12d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) <-> ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) ) ) | 
						
						
							| 53 | 
							
								48
							 | 
							eqeq2d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( r = ( lastS ` d ) <-> r = ( lastS ` ( W ++ <" r "> ) ) ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							anbi12d | 
							 |-  ( d = ( W ++ <" r "> ) -> ( ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) <-> ( ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) /\ r = ( lastS ` ( W ++ <" r "> ) ) ) ) ) | 
						
						
							| 55 | 
							
								54
							 | 
							bicomd | 
							 |-  ( d = ( W ++ <" r "> ) -> ( ( ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) /\ r = ( lastS ` ( W ++ <" r "> ) ) ) <-> ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) ) | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							 |-  ( ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) /\ d = ( W ++ <" r "> ) ) -> ( ( ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) /\ r = ( lastS ` ( W ++ <" r "> ) ) ) <-> ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) ) | 
						
						
							| 57 | 
							
								56
							 | 
							biimpd | 
							 |-  ( ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) /\ d = ( W ++ <" r "> ) ) -> ( ( ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) /\ r = ( lastS ` ( W ++ <" r "> ) ) ) -> ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) ) | 
						
						
							| 58 | 
							
								44 57
							 | 
							spcimedv | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> ( ( ( ( W ++ <" r "> ) e. ( ( N + 1 ) WWalksN G ) /\ ( ( ( W ++ <" r "> ) prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` ( W ++ <" r "> ) ) } e. E ) ) /\ r = ( lastS ` ( W ++ <" r "> ) ) ) -> E. d ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) ) | 
						
						
							| 59 | 
							
								40 43 58
							 | 
							mp2and | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> E. d ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) | 
						
						
							| 60 | 
							
								
							 | 
							oveq1 | 
							 |-  ( w = d -> ( w prefix ( N + 1 ) ) = ( d prefix ( N + 1 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							eqeq1d | 
							 |-  ( w = d -> ( ( w prefix ( N + 1 ) ) = W <-> ( d prefix ( N + 1 ) ) = W ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = d -> ( lastS ` w ) = ( lastS ` d ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							preq2d | 
							 |-  ( w = d -> { ( lastS ` W ) , ( lastS ` w ) } = { ( lastS ` W ) , ( lastS ` d ) } ) | 
						
						
							| 64 | 
							
								63
							 | 
							eleq1d | 
							 |-  ( w = d -> ( { ( lastS ` W ) , ( lastS ` w ) } e. E <-> { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) | 
						
						
							| 65 | 
							
								61 64
							 | 
							anbi12d | 
							 |-  ( w = d -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) <-> ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) ) | 
						
						
							| 66 | 
							
								65
							 | 
							elrab | 
							 |-  ( d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } <-> ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) ) | 
						
						
							| 67 | 
							
								66
							 | 
							anbi1i | 
							 |-  ( ( d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } /\ r = ( lastS ` d ) ) <-> ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) | 
						
						
							| 68 | 
							
								67
							 | 
							exbii | 
							 |-  ( E. d ( d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } /\ r = ( lastS ` d ) ) <-> E. d ( ( d e. ( ( N + 1 ) WWalksN G ) /\ ( ( d prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` d ) } e. E ) ) /\ r = ( lastS ` d ) ) ) | 
						
						
							| 69 | 
							
								59 68
							 | 
							sylibr | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> E. d ( d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } /\ r = ( lastS ` d ) ) ) | 
						
						
							| 70 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } r = ( lastS ` d ) <-> E. d ( d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } /\ r = ( lastS ` d ) ) ) | 
						
						
							| 71 | 
							
								69 70
							 | 
							sylibr | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> E. d e. { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } r = ( lastS ` d ) ) | 
						
						
							| 72 | 
							
								1 2 3
							 | 
							wwlksnextwrd | 
							 |-  ( W e. ( N WWalksN G ) -> D = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> D = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) | 
						
						
							| 74 | 
							
								71 73
							 | 
							rexeqtrrdv | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> E. d e. D r = ( lastS ` d ) ) | 
						
						
							| 75 | 
							
								
							 | 
							fveq2 | 
							 |-  ( t = d -> ( lastS ` t ) = ( lastS ` d ) )  | 
						
						
							| 76 | 
							
								
							 | 
							fvex | 
							 |-  ( lastS ` d ) e. _V  | 
						
						
							| 77 | 
							
								75 5 76
							 | 
							fvmpt | 
							 |-  ( d e. D -> ( F ` d ) = ( lastS ` d ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							eqeq2d | 
							 |-  ( d e. D -> ( r = ( F ` d ) <-> r = ( lastS ` d ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							rexbiia | 
							 |-  ( E. d e. D r = ( F ` d ) <-> E. d e. D r = ( lastS ` d ) )  | 
						
						
							| 80 | 
							
								74 79
							 | 
							sylibr | 
							 |-  ( ( W e. ( N WWalksN G ) /\ ( r e. V /\ { ( lastS ` W ) , r } e. E ) ) -> E. d e. D r = ( F ` d ) ) | 
						
						
							| 81 | 
							
								12 80
							 | 
							sylan2b | 
							 |-  ( ( W e. ( N WWalksN G ) /\ r e. R ) -> E. d e. D r = ( F ` d ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ralrimiva | 
							 |-  ( W e. ( N WWalksN G ) -> A. r e. R E. d e. D r = ( F ` d ) )  | 
						
						
							| 83 | 
							
								
							 | 
							dffo3 | 
							 |-  ( F : D -onto-> R <-> ( F : D --> R /\ A. r e. R E. d e. D r = ( F ` d ) ) )  | 
						
						
							| 84 | 
							
								9 82 83
							 | 
							sylanbrc | 
							 |-  ( W e. ( N WWalksN G ) -> F : D -onto-> R )  |