Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
|- V = ( Vtx ` G ) |
2 |
|
wwlksnextbij0.e |
|- E = ( Edg ` G ) |
3 |
|
wwlksnextbij0.d |
|- D = { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } |
4 |
|
3anass |
|- ( ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) <-> ( ( # ` w ) = ( N + 2 ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) |
5 |
4
|
bianass |
|- ( ( w e. Word V /\ ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) |
6 |
1
|
wwlknbp |
|- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |
7 |
|
simpl |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> N e. NN0 ) |
8 |
|
simpl |
|- ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. Word V ) |
9 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
10
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
12 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
13 |
|
2pos |
|- 0 < 2 |
14 |
13
|
a1i |
|- ( N e. NN0 -> 0 < 2 ) |
15 |
9 11 12 14
|
addgegt0d |
|- ( N e. NN0 -> 0 < ( N + 2 ) ) |
16 |
15
|
adantr |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> 0 < ( N + 2 ) ) |
17 |
|
breq2 |
|- ( ( # ` w ) = ( N + 2 ) -> ( 0 < ( # ` w ) <-> 0 < ( N + 2 ) ) ) |
18 |
17
|
ad2antll |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( 0 < ( # ` w ) <-> 0 < ( N + 2 ) ) ) |
19 |
16 18
|
mpbird |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> 0 < ( # ` w ) ) |
20 |
|
hashgt0n0 |
|- ( ( w e. Word V /\ 0 < ( # ` w ) ) -> w =/= (/) ) |
21 |
8 19 20
|
syl2an2 |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> w =/= (/) ) |
22 |
|
lswcl |
|- ( ( w e. Word V /\ w =/= (/) ) -> ( lastS ` w ) e. V ) |
23 |
8 21 22
|
syl2an2 |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( lastS ` w ) e. V ) |
24 |
23
|
adantrr |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( lastS ` w ) e. V ) |
25 |
|
pfxcl |
|- ( w e. Word V -> ( w prefix ( N + 1 ) ) e. Word V ) |
26 |
|
eleq1 |
|- ( W = ( w prefix ( N + 1 ) ) -> ( W e. Word V <-> ( w prefix ( N + 1 ) ) e. Word V ) ) |
27 |
25 26
|
syl5ibr |
|- ( W = ( w prefix ( N + 1 ) ) -> ( w e. Word V -> W e. Word V ) ) |
28 |
27
|
eqcoms |
|- ( ( w prefix ( N + 1 ) ) = W -> ( w e. Word V -> W e. Word V ) ) |
29 |
28
|
adantr |
|- ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( w e. Word V -> W e. Word V ) ) |
30 |
29
|
com12 |
|- ( w e. Word V -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> W e. Word V ) ) |
31 |
30
|
adantr |
|- ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> W e. Word V ) ) |
32 |
31
|
imp |
|- ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> W e. Word V ) |
33 |
32
|
adantl |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> W e. Word V ) |
34 |
|
oveq1 |
|- ( W = ( w prefix ( N + 1 ) ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
35 |
34
|
eqcoms |
|- ( ( w prefix ( N + 1 ) ) = W -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
36 |
35
|
adantr |
|- ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
37 |
36
|
ad2antll |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( W ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
38 |
|
oveq1 |
|- ( ( # ` w ) = ( N + 2 ) -> ( ( # ` w ) - 1 ) = ( ( N + 2 ) - 1 ) ) |
39 |
38
|
adantl |
|- ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> ( ( # ` w ) - 1 ) = ( ( N + 2 ) - 1 ) ) |
40 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
41 |
|
2cnd |
|- ( N e. NN0 -> 2 e. CC ) |
42 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
43 |
40 41 42
|
addsubassd |
|- ( N e. NN0 -> ( ( N + 2 ) - 1 ) = ( N + ( 2 - 1 ) ) ) |
44 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
45 |
44
|
a1i |
|- ( N e. NN0 -> ( 2 - 1 ) = 1 ) |
46 |
45
|
oveq2d |
|- ( N e. NN0 -> ( N + ( 2 - 1 ) ) = ( N + 1 ) ) |
47 |
43 46
|
eqtrd |
|- ( N e. NN0 -> ( ( N + 2 ) - 1 ) = ( N + 1 ) ) |
48 |
39 47
|
sylan9eqr |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( # ` w ) - 1 ) = ( N + 1 ) ) |
49 |
48
|
oveq2d |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( w prefix ( ( # ` w ) - 1 ) ) = ( w prefix ( N + 1 ) ) ) |
50 |
49
|
oveq1d |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
51 |
|
pfxlswccat |
|- ( ( w e. Word V /\ w =/= (/) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) |
52 |
8 21 51
|
syl2an2 |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) |
53 |
50 52
|
eqtr3d |
|- ( ( N e. NN0 /\ ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) -> ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) |
54 |
53
|
adantrr |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( ( w prefix ( N + 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) |
55 |
37 54
|
eqtr2d |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> w = ( W ++ <" ( lastS ` w ) "> ) ) |
56 |
|
simprrr |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> { ( lastS ` W ) , ( lastS ` w ) } e. E ) |
57 |
1 2
|
wwlksnextbi |
|- ( ( ( N e. NN0 /\ ( lastS ` w ) e. V ) /\ ( W e. Word V /\ w = ( W ++ <" ( lastS ` w ) "> ) /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) <-> W e. ( N WWalksN G ) ) ) |
58 |
7 24 33 55 56 57
|
syl23anc |
|- ( ( N e. NN0 /\ ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) <-> W e. ( N WWalksN G ) ) ) |
59 |
58
|
exbiri |
|- ( N e. NN0 -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( W e. ( N WWalksN G ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) |
60 |
59
|
com23 |
|- ( N e. NN0 -> ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) |
61 |
60
|
3ad2ant2 |
|- ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) |
62 |
6 61
|
mpcom |
|- ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) |
63 |
62
|
expcomd |
|- ( W e. ( N WWalksN G ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) ) |
64 |
63
|
imp |
|- ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) -> w e. ( ( N + 1 ) WWalksN G ) ) ) |
65 |
1 2
|
wwlknp |
|- ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) |
66 |
40 42 42
|
addassd |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
67 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
68 |
67
|
a1i |
|- ( N e. NN0 -> ( 1 + 1 ) = 2 ) |
69 |
68
|
oveq2d |
|- ( N e. NN0 -> ( N + ( 1 + 1 ) ) = ( N + 2 ) ) |
70 |
66 69
|
eqtrd |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) |
71 |
70
|
eqeq2d |
|- ( N e. NN0 -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) <-> ( # ` w ) = ( N + 2 ) ) ) |
72 |
71
|
biimpd |
|- ( N e. NN0 -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( # ` w ) = ( N + 2 ) ) ) |
73 |
72
|
adantr |
|- ( ( N e. NN0 /\ W e. Word V ) -> ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( # ` w ) = ( N + 2 ) ) ) |
74 |
73
|
com12 |
|- ( ( # ` w ) = ( ( N + 1 ) + 1 ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( # ` w ) = ( N + 2 ) ) ) |
75 |
74
|
adantl |
|- ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( # ` w ) = ( N + 2 ) ) ) |
76 |
|
simpl |
|- ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> w e. Word V ) |
77 |
75 76
|
jctild |
|- ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
78 |
77
|
3adant3 |
|- ( ( w e. Word V /\ ( # ` w ) = ( ( N + 1 ) + 1 ) /\ A. i e. ( 0 ..^ ( N + 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
79 |
65 78
|
syl |
|- ( w e. ( ( N + 1 ) WWalksN G ) -> ( ( N e. NN0 /\ W e. Word V ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
80 |
79
|
com12 |
|- ( ( N e. NN0 /\ W e. Word V ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
81 |
80
|
3adant1 |
|- ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
82 |
6 81
|
syl |
|- ( W e. ( N WWalksN G ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
83 |
82
|
adantr |
|- ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( w e. ( ( N + 1 ) WWalksN G ) -> ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) ) ) |
84 |
64 83
|
impbid |
|- ( ( W e. ( N WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) <-> w e. ( ( N + 1 ) WWalksN G ) ) ) |
85 |
84
|
ex |
|- ( W e. ( N WWalksN G ) -> ( ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) -> ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) <-> w e. ( ( N + 1 ) WWalksN G ) ) ) ) |
86 |
85
|
pm5.32rd |
|- ( W e. ( N WWalksN G ) -> ( ( ( w e. Word V /\ ( # ` w ) = ( N + 2 ) ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( w e. ( ( N + 1 ) WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) ) |
87 |
5 86
|
syl5bb |
|- ( W e. ( N WWalksN G ) -> ( ( w e. Word V /\ ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) <-> ( w e. ( ( N + 1 ) WWalksN G ) /\ ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) ) ) ) |
88 |
87
|
rabbidva2 |
|- ( W e. ( N WWalksN G ) -> { w e. Word V | ( ( # ` w ) = ( N + 2 ) /\ ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) |
89 |
3 88
|
eqtrid |
|- ( W e. ( N WWalksN G ) -> D = { w e. ( ( N + 1 ) WWalksN G ) | ( ( w prefix ( N + 1 ) ) = W /\ { ( lastS ` W ) , ( lastS ` w ) } e. E ) } ) |