Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
|- ( -. ( N WWalksN G ) = (/) <-> E. w w e. ( N WWalksN G ) ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wwlknbp |
|- ( w e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) ) |
4 |
|
nnel |
|- ( -. G e/ _V <-> G e. _V ) |
5 |
|
nnel |
|- ( -. N e/ NN0 <-> N e. NN0 ) |
6 |
4 5
|
anbi12i |
|- ( ( -. G e/ _V /\ -. N e/ NN0 ) <-> ( G e. _V /\ N e. NN0 ) ) |
7 |
6
|
biimpri |
|- ( ( G e. _V /\ N e. NN0 ) -> ( -. G e/ _V /\ -. N e/ NN0 ) ) |
8 |
7
|
3adant3 |
|- ( ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) -> ( -. G e/ _V /\ -. N e/ NN0 ) ) |
9 |
|
ioran |
|- ( -. ( G e/ _V \/ N e/ NN0 ) <-> ( -. G e/ _V /\ -. N e/ NN0 ) ) |
10 |
8 9
|
sylibr |
|- ( ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) -> -. ( G e/ _V \/ N e/ NN0 ) ) |
11 |
3 10
|
syl |
|- ( w e. ( N WWalksN G ) -> -. ( G e/ _V \/ N e/ NN0 ) ) |
12 |
11
|
exlimiv |
|- ( E. w w e. ( N WWalksN G ) -> -. ( G e/ _V \/ N e/ NN0 ) ) |
13 |
1 12
|
sylbi |
|- ( -. ( N WWalksN G ) = (/) -> -. ( G e/ _V \/ N e/ NN0 ) ) |
14 |
13
|
con4i |
|- ( ( G e/ _V \/ N e/ NN0 ) -> ( N WWalksN G ) = (/) ) |