| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neq0 |  |-  ( -. ( N WWalksN G ) = (/) <-> E. w w e. ( N WWalksN G ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | wwlknbp |  |-  ( w e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) ) | 
						
							| 4 |  | nnel |  |-  ( -. G e/ _V <-> G e. _V ) | 
						
							| 5 |  | nnel |  |-  ( -. N e/ NN0 <-> N e. NN0 ) | 
						
							| 6 | 4 5 | anbi12i |  |-  ( ( -. G e/ _V /\ -. N e/ NN0 ) <-> ( G e. _V /\ N e. NN0 ) ) | 
						
							| 7 | 6 | biimpri |  |-  ( ( G e. _V /\ N e. NN0 ) -> ( -. G e/ _V /\ -. N e/ NN0 ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) -> ( -. G e/ _V /\ -. N e/ NN0 ) ) | 
						
							| 9 |  | ioran |  |-  ( -. ( G e/ _V \/ N e/ NN0 ) <-> ( -. G e/ _V /\ -. N e/ NN0 ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( G e. _V /\ N e. NN0 /\ w e. Word ( Vtx ` G ) ) -> -. ( G e/ _V \/ N e/ NN0 ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( w e. ( N WWalksN G ) -> -. ( G e/ _V \/ N e/ NN0 ) ) | 
						
							| 12 | 11 | exlimiv |  |-  ( E. w w e. ( N WWalksN G ) -> -. ( G e/ _V \/ N e/ NN0 ) ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( -. ( N WWalksN G ) = (/) -> -. ( G e/ _V \/ N e/ NN0 ) ) | 
						
							| 14 | 13 | con4i |  |-  ( ( G e/ _V \/ N e/ NN0 ) -> ( N WWalksN G ) = (/) ) |