Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnon.v |
|- V = ( Vtx ` G ) |
2 |
|
df-wwlksnon |
|- WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) |
3 |
2
|
a1i |
|- ( ( N e. NN0 /\ G e. U ) -> WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) ) |
4 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
5 |
4 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
6 |
5
|
adantl |
|- ( ( n = N /\ g = G ) -> ( Vtx ` g ) = V ) |
7 |
|
oveq12 |
|- ( ( n = N /\ g = G ) -> ( n WWalksN g ) = ( N WWalksN G ) ) |
8 |
|
fveqeq2 |
|- ( n = N -> ( ( w ` n ) = b <-> ( w ` N ) = b ) ) |
9 |
8
|
anbi2d |
|- ( n = N -> ( ( ( w ` 0 ) = a /\ ( w ` n ) = b ) <-> ( ( w ` 0 ) = a /\ ( w ` N ) = b ) ) ) |
10 |
9
|
adantr |
|- ( ( n = N /\ g = G ) -> ( ( ( w ` 0 ) = a /\ ( w ` n ) = b ) <-> ( ( w ` 0 ) = a /\ ( w ` N ) = b ) ) ) |
11 |
7 10
|
rabeqbidv |
|- ( ( n = N /\ g = G ) -> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) |
12 |
6 6 11
|
mpoeq123dv |
|- ( ( n = N /\ g = G ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |
13 |
12
|
adantl |
|- ( ( ( N e. NN0 /\ G e. U ) /\ ( n = N /\ g = G ) ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |
14 |
|
simpl |
|- ( ( N e. NN0 /\ G e. U ) -> N e. NN0 ) |
15 |
|
elex |
|- ( G e. U -> G e. _V ) |
16 |
15
|
adantl |
|- ( ( N e. NN0 /\ G e. U ) -> G e. _V ) |
17 |
1
|
fvexi |
|- V e. _V |
18 |
17 17
|
mpoex |
|- ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) e. _V |
19 |
18
|
a1i |
|- ( ( N e. NN0 /\ G e. U ) -> ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) e. _V ) |
20 |
3 13 14 16 19
|
ovmpod |
|- ( ( N e. NN0 /\ G e. U ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |