Metamath Proof Explorer


Theorem wwlksnon0

Description: Sufficient conditions for a set of walks of a fixed length between two vertices to be empty. (Contributed by AV, 15-May-2021) (Proof shortened by AV, 21-May-2021)

Ref Expression
Hypothesis wwlksnon0.v
|- V = ( Vtx ` G )
Assertion wwlksnon0
|- ( -. ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = (/) )

Proof

Step Hyp Ref Expression
1 wwlksnon0.v
 |-  V = ( Vtx ` G )
2 df-wwlksnon
 |-  WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) )
3 1 wwlksnon
 |-  ( ( N e. NN0 /\ G e. _V ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) )
4 2 3 2mpo0
 |-  ( -. ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = (/) )