| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
1
|
iswwlksnon |
|- ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } |
| 3 |
|
wwlksnfi |
|- ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) |
| 4 |
|
rabfi |
|- ( ( N WWalksN G ) e. Fin -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. Fin ) |
| 5 |
3 4
|
syl |
|- ( ( Vtx ` G ) e. Fin -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. Fin ) |
| 6 |
2 5
|
eqeltrid |
|- ( ( Vtx ` G ) e. Fin -> ( A ( N WWalksNOn G ) B ) e. Fin ) |