| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iswwlksn |  |-  ( N e. NN0 -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 3 |  | ccatws1lenp1b |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) | 
						
							| 5 | 4 | adantld |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( # ` W ) = N ) ) | 
						
							| 6 | 2 5 | sylbid |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( # ` W ) = N ) ) |