Step |
Hyp |
Ref |
Expression |
1 |
|
iswwlksn |
|- ( N e. NN0 -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) |
2 |
1
|
adantl |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) <-> ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) ) ) |
3 |
|
ccatws1lenp1b |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
4 |
3
|
biimpd |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
5 |
4
|
adantld |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( ( W ++ <" X "> ) e. ( WWalks ` G ) /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( # ` W ) = N ) ) |
6 |
2 5
|
sylbid |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( # ` W ) = N ) ) |