Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
|- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
2 |
|
wwlktovf1o.r |
|- R = { n e. V | { P , n } e. X } |
3 |
|
wwlktovf1o.f |
|- F = ( t e. D |-> ( t ` 1 ) ) |
4 |
|
wrdf |
|- ( t e. Word V -> t : ( 0 ..^ ( # ` t ) ) --> V ) |
5 |
|
oveq2 |
|- ( ( # ` t ) = 2 -> ( 0 ..^ ( # ` t ) ) = ( 0 ..^ 2 ) ) |
6 |
5
|
feq2d |
|- ( ( # ` t ) = 2 -> ( t : ( 0 ..^ ( # ` t ) ) --> V <-> t : ( 0 ..^ 2 ) --> V ) ) |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
|
2nn |
|- 2 e. NN |
9 |
|
1lt2 |
|- 1 < 2 |
10 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
11 |
7 8 9 10
|
mpbir3an |
|- 1 e. ( 0 ..^ 2 ) |
12 |
|
ffvelrn |
|- ( ( t : ( 0 ..^ 2 ) --> V /\ 1 e. ( 0 ..^ 2 ) ) -> ( t ` 1 ) e. V ) |
13 |
11 12
|
mpan2 |
|- ( t : ( 0 ..^ 2 ) --> V -> ( t ` 1 ) e. V ) |
14 |
6 13
|
syl6bi |
|- ( ( # ` t ) = 2 -> ( t : ( 0 ..^ ( # ` t ) ) --> V -> ( t ` 1 ) e. V ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> ( t : ( 0 ..^ ( # ` t ) ) --> V -> ( t ` 1 ) e. V ) ) |
16 |
4 15
|
mpan9 |
|- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> ( t ` 1 ) e. V ) |
17 |
|
preq1 |
|- ( ( t ` 0 ) = P -> { ( t ` 0 ) , ( t ` 1 ) } = { P , ( t ` 1 ) } ) |
18 |
17
|
eleq1d |
|- ( ( t ` 0 ) = P -> ( { ( t ` 0 ) , ( t ` 1 ) } e. X <-> { P , ( t ` 1 ) } e. X ) ) |
19 |
18
|
biimpa |
|- ( ( ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> { P , ( t ` 1 ) } e. X ) |
20 |
19
|
3adant1 |
|- ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> { P , ( t ` 1 ) } e. X ) |
21 |
20
|
adantl |
|- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> { P , ( t ` 1 ) } e. X ) |
22 |
16 21
|
jca |
|- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> ( ( t ` 1 ) e. V /\ { P , ( t ` 1 ) } e. X ) ) |
23 |
|
fveqeq2 |
|- ( w = t -> ( ( # ` w ) = 2 <-> ( # ` t ) = 2 ) ) |
24 |
|
fveq1 |
|- ( w = t -> ( w ` 0 ) = ( t ` 0 ) ) |
25 |
24
|
eqeq1d |
|- ( w = t -> ( ( w ` 0 ) = P <-> ( t ` 0 ) = P ) ) |
26 |
|
fveq1 |
|- ( w = t -> ( w ` 1 ) = ( t ` 1 ) ) |
27 |
24 26
|
preq12d |
|- ( w = t -> { ( w ` 0 ) , ( w ` 1 ) } = { ( t ` 0 ) , ( t ` 1 ) } ) |
28 |
27
|
eleq1d |
|- ( w = t -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) |
29 |
23 25 28
|
3anbi123d |
|- ( w = t -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) ) |
30 |
29 1
|
elrab2 |
|- ( t e. D <-> ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) ) |
31 |
|
preq2 |
|- ( n = ( t ` 1 ) -> { P , n } = { P , ( t ` 1 ) } ) |
32 |
31
|
eleq1d |
|- ( n = ( t ` 1 ) -> ( { P , n } e. X <-> { P , ( t ` 1 ) } e. X ) ) |
33 |
32 2
|
elrab2 |
|- ( ( t ` 1 ) e. R <-> ( ( t ` 1 ) e. V /\ { P , ( t ` 1 ) } e. X ) ) |
34 |
22 30 33
|
3imtr4i |
|- ( t e. D -> ( t ` 1 ) e. R ) |
35 |
3 34
|
fmpti |
|- F : D --> R |