Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
|- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
2 |
|
wwlktovf1o.r |
|- R = { n e. V | { P , n } e. X } |
3 |
|
wwlktovf1o.f |
|- F = ( t e. D |-> ( t ` 1 ) ) |
4 |
1 2 3
|
wwlktovf |
|- F : D --> R |
5 |
|
fveq1 |
|- ( t = x -> ( t ` 1 ) = ( x ` 1 ) ) |
6 |
|
fvex |
|- ( x ` 1 ) e. _V |
7 |
5 3 6
|
fvmpt |
|- ( x e. D -> ( F ` x ) = ( x ` 1 ) ) |
8 |
|
fveq1 |
|- ( t = y -> ( t ` 1 ) = ( y ` 1 ) ) |
9 |
|
fvex |
|- ( y ` 1 ) e. _V |
10 |
8 3 9
|
fvmpt |
|- ( y e. D -> ( F ` y ) = ( y ` 1 ) ) |
11 |
7 10
|
eqeqan12d |
|- ( ( x e. D /\ y e. D ) -> ( ( F ` x ) = ( F ` y ) <-> ( x ` 1 ) = ( y ` 1 ) ) ) |
12 |
|
fveqeq2 |
|- ( w = x -> ( ( # ` w ) = 2 <-> ( # ` x ) = 2 ) ) |
13 |
|
fveq1 |
|- ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) |
14 |
13
|
eqeq1d |
|- ( w = x -> ( ( w ` 0 ) = P <-> ( x ` 0 ) = P ) ) |
15 |
|
fveq1 |
|- ( w = x -> ( w ` 1 ) = ( x ` 1 ) ) |
16 |
13 15
|
preq12d |
|- ( w = x -> { ( w ` 0 ) , ( w ` 1 ) } = { ( x ` 0 ) , ( x ` 1 ) } ) |
17 |
16
|
eleq1d |
|- ( w = x -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) |
18 |
12 14 17
|
3anbi123d |
|- ( w = x -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) ) |
19 |
18 1
|
elrab2 |
|- ( x e. D <-> ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) ) |
20 |
|
fveqeq2 |
|- ( w = y -> ( ( # ` w ) = 2 <-> ( # ` y ) = 2 ) ) |
21 |
|
fveq1 |
|- ( w = y -> ( w ` 0 ) = ( y ` 0 ) ) |
22 |
21
|
eqeq1d |
|- ( w = y -> ( ( w ` 0 ) = P <-> ( y ` 0 ) = P ) ) |
23 |
|
fveq1 |
|- ( w = y -> ( w ` 1 ) = ( y ` 1 ) ) |
24 |
21 23
|
preq12d |
|- ( w = y -> { ( w ` 0 ) , ( w ` 1 ) } = { ( y ` 0 ) , ( y ` 1 ) } ) |
25 |
24
|
eleq1d |
|- ( w = y -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) |
26 |
20 22 25
|
3anbi123d |
|- ( w = y -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) |
27 |
26 1
|
elrab2 |
|- ( y e. D <-> ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) |
28 |
|
simpr1 |
|- ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) -> ( # ` x ) = 2 ) |
29 |
|
simpr1 |
|- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> ( # ` y ) = 2 ) |
30 |
29
|
eqcomd |
|- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> 2 = ( # ` y ) ) |
31 |
28 30
|
sylan9eq |
|- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( # ` x ) = ( # ` y ) ) |
32 |
31
|
adantr |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( # ` x ) = ( # ` y ) ) |
33 |
|
simpr2 |
|- ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) -> ( x ` 0 ) = P ) |
34 |
|
simpr2 |
|- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> ( y ` 0 ) = P ) |
35 |
34
|
eqcomd |
|- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> P = ( y ` 0 ) ) |
36 |
33 35
|
sylan9eq |
|- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( x ` 0 ) = ( y ` 0 ) ) |
37 |
36
|
adantr |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x ` 0 ) = ( y ` 0 ) ) |
38 |
|
simpr |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x ` 1 ) = ( y ` 1 ) ) |
39 |
|
oveq2 |
|- ( ( # ` x ) = 2 -> ( 0 ..^ ( # ` x ) ) = ( 0 ..^ 2 ) ) |
40 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
41 |
39 40
|
eqtrdi |
|- ( ( # ` x ) = 2 -> ( 0 ..^ ( # ` x ) ) = { 0 , 1 } ) |
42 |
41
|
raleqdv |
|- ( ( # ` x ) = 2 -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> A. i e. { 0 , 1 } ( x ` i ) = ( y ` i ) ) ) |
43 |
|
c0ex |
|- 0 e. _V |
44 |
|
1ex |
|- 1 e. _V |
45 |
|
fveq2 |
|- ( i = 0 -> ( x ` i ) = ( x ` 0 ) ) |
46 |
|
fveq2 |
|- ( i = 0 -> ( y ` i ) = ( y ` 0 ) ) |
47 |
45 46
|
eqeq12d |
|- ( i = 0 -> ( ( x ` i ) = ( y ` i ) <-> ( x ` 0 ) = ( y ` 0 ) ) ) |
48 |
|
fveq2 |
|- ( i = 1 -> ( x ` i ) = ( x ` 1 ) ) |
49 |
|
fveq2 |
|- ( i = 1 -> ( y ` i ) = ( y ` 1 ) ) |
50 |
48 49
|
eqeq12d |
|- ( i = 1 -> ( ( x ` i ) = ( y ` i ) <-> ( x ` 1 ) = ( y ` 1 ) ) ) |
51 |
43 44 47 50
|
ralpr |
|- ( A. i e. { 0 , 1 } ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) |
52 |
42 51
|
bitrdi |
|- ( ( # ` x ) = 2 -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
53 |
52
|
3ad2ant1 |
|- ( ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
54 |
53
|
ad3antlr |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
55 |
37 38 54
|
mpbir2and |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) |
56 |
|
eqwrd |
|- ( ( x e. Word V /\ y e. Word V ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
57 |
56
|
ad2ant2r |
|- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
58 |
57
|
adantr |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
59 |
32 55 58
|
mpbir2and |
|- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> x = y ) |
60 |
59
|
ex |
|- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( ( x ` 1 ) = ( y ` 1 ) -> x = y ) ) |
61 |
19 27 60
|
syl2anb |
|- ( ( x e. D /\ y e. D ) -> ( ( x ` 1 ) = ( y ` 1 ) -> x = y ) ) |
62 |
11 61
|
sylbid |
|- ( ( x e. D /\ y e. D ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
63 |
62
|
rgen2 |
|- A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) |
64 |
|
dff13 |
|- ( F : D -1-1-> R <-> ( F : D --> R /\ A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
65 |
4 63 64
|
mpbir2an |
|- F : D -1-1-> R |