Metamath Proof Explorer


Theorem wwlktovf1o

Description: Lemma 4 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 28-Jul-2018)

Ref Expression
Hypotheses wwlktovf1o.d
|- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) }
wwlktovf1o.r
|- R = { n e. V | { P , n } e. X }
wwlktovf1o.f
|- F = ( t e. D |-> ( t ` 1 ) )
Assertion wwlktovf1o
|- ( P e. V -> F : D -1-1-onto-> R )

Proof

Step Hyp Ref Expression
1 wwlktovf1o.d
 |-  D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) }
2 wwlktovf1o.r
 |-  R = { n e. V | { P , n } e. X }
3 wwlktovf1o.f
 |-  F = ( t e. D |-> ( t ` 1 ) )
4 1 2 3 wwlktovf1
 |-  F : D -1-1-> R
5 4 a1i
 |-  ( P e. V -> F : D -1-1-> R )
6 1 2 3 wwlktovfo
 |-  ( P e. V -> F : D -onto-> R )
7 df-f1o
 |-  ( F : D -1-1-onto-> R <-> ( F : D -1-1-> R /\ F : D -onto-> R ) )
8 5 6 7 sylanbrc
 |-  ( P e. V -> F : D -1-1-onto-> R )