Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
2 |
|
1re |
|- 1 e. RR |
3 |
|
rexadd |
|- ( ( 1 e. RR /\ 1 e. RR ) -> ( 1 +e 1 ) = ( 1 + 1 ) ) |
4 |
2 2 3
|
mp2an |
|- ( 1 +e 1 ) = ( 1 + 1 ) |
5 |
1 4
|
eqtr4i |
|- 2 = ( 1 +e 1 ) |
6 |
5
|
oveq1i |
|- ( 2 *e A ) = ( ( 1 +e 1 ) *e A ) |
7 |
|
1xr |
|- 1 e. RR* |
8 |
|
0le1 |
|- 0 <_ 1 |
9 |
7 8
|
pm3.2i |
|- ( 1 e. RR* /\ 0 <_ 1 ) |
10 |
|
xadddi2r |
|- ( ( ( 1 e. RR* /\ 0 <_ 1 ) /\ ( 1 e. RR* /\ 0 <_ 1 ) /\ A e. RR* ) -> ( ( 1 +e 1 ) *e A ) = ( ( 1 *e A ) +e ( 1 *e A ) ) ) |
11 |
9 9 10
|
mp3an12 |
|- ( A e. RR* -> ( ( 1 +e 1 ) *e A ) = ( ( 1 *e A ) +e ( 1 *e A ) ) ) |
12 |
|
xmulid2 |
|- ( A e. RR* -> ( 1 *e A ) = A ) |
13 |
12 12
|
oveq12d |
|- ( A e. RR* -> ( ( 1 *e A ) +e ( 1 *e A ) ) = ( A +e A ) ) |
14 |
11 13
|
eqtrd |
|- ( A e. RR* -> ( ( 1 +e 1 ) *e A ) = ( A +e A ) ) |
15 |
6 14
|
eqtrid |
|- ( A e. RR* -> ( 2 *e A ) = ( A +e A ) ) |