| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xadd0ge.a |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | xadd0ge.b |  |-  ( ph -> B e. ( 0 [,] +oo ) ) | 
						
							| 3 |  | xaddrid |  |-  ( A e. RR* -> ( A +e 0 ) = A ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> ( A +e 0 ) = A ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ph -> A = ( A +e 0 ) ) | 
						
							| 6 |  | 0xr |  |-  0 e. RR* | 
						
							| 7 | 6 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 8 | 1 7 | jca |  |-  ( ph -> ( A e. RR* /\ 0 e. RR* ) ) | 
						
							| 9 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 10 | 9 2 | sselid |  |-  ( ph -> B e. RR* ) | 
						
							| 11 | 1 10 | jca |  |-  ( ph -> ( A e. RR* /\ B e. RR* ) ) | 
						
							| 12 | 8 11 | jca |  |-  ( ph -> ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) ) | 
						
							| 13 | 1 | xrleidd |  |-  ( ph -> A <_ A ) | 
						
							| 14 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 15 | 14 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 16 |  | iccgelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) | 
						
							| 17 | 7 15 2 16 | syl3anc |  |-  ( ph -> 0 <_ B ) | 
						
							| 18 | 13 17 | jca |  |-  ( ph -> ( A <_ A /\ 0 <_ B ) ) | 
						
							| 19 |  | xle2add |  |-  ( ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) -> ( ( A <_ A /\ 0 <_ B ) -> ( A +e 0 ) <_ ( A +e B ) ) ) | 
						
							| 20 | 12 18 19 | sylc |  |-  ( ph -> ( A +e 0 ) <_ ( A +e B ) ) | 
						
							| 21 | 5 20 | eqbrtrd |  |-  ( ph -> A <_ ( A +e B ) ) |