Step |
Hyp |
Ref |
Expression |
1 |
|
xadd0ge.a |
|- ( ph -> A e. RR* ) |
2 |
|
xadd0ge.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
3 |
|
xaddid1 |
|- ( A e. RR* -> ( A +e 0 ) = A ) |
4 |
1 3
|
syl |
|- ( ph -> ( A +e 0 ) = A ) |
5 |
4
|
eqcomd |
|- ( ph -> A = ( A +e 0 ) ) |
6 |
|
0xr |
|- 0 e. RR* |
7 |
6
|
a1i |
|- ( ph -> 0 e. RR* ) |
8 |
1 7
|
jca |
|- ( ph -> ( A e. RR* /\ 0 e. RR* ) ) |
9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
10 |
9 2
|
sselid |
|- ( ph -> B e. RR* ) |
11 |
1 10
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
12 |
8 11
|
jca |
|- ( ph -> ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) ) |
13 |
1
|
xrleidd |
|- ( ph -> A <_ A ) |
14 |
|
pnfxr |
|- +oo e. RR* |
15 |
14
|
a1i |
|- ( ph -> +oo e. RR* ) |
16 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
17 |
7 15 2 16
|
syl3anc |
|- ( ph -> 0 <_ B ) |
18 |
13 17
|
jca |
|- ( ph -> ( A <_ A /\ 0 <_ B ) ) |
19 |
|
xle2add |
|- ( ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) -> ( ( A <_ A /\ 0 <_ B ) -> ( A +e 0 ) <_ ( A +e B ) ) ) |
20 |
12 18 19
|
sylc |
|- ( ph -> ( A +e 0 ) <_ ( A +e B ) ) |
21 |
5 20
|
eqbrtrd |
|- ( ph -> A <_ ( A +e B ) ) |