Metamath Proof Explorer


Theorem xadd0ge2

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge2.a
|- ( ph -> A e. RR* )
xadd0ge2.b
|- ( ph -> B e. ( 0 [,] +oo ) )
Assertion xadd0ge2
|- ( ph -> A <_ ( B +e A ) )

Proof

Step Hyp Ref Expression
1 xadd0ge2.a
 |-  ( ph -> A e. RR* )
2 xadd0ge2.b
 |-  ( ph -> B e. ( 0 [,] +oo ) )
3 1 2 xadd0ge
 |-  ( ph -> A <_ ( A +e B ) )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 4 2 sselid
 |-  ( ph -> B e. RR* )
6 1 5 xaddcomd
 |-  ( ph -> ( A +e B ) = ( B +e A ) )
7 3 6 breqtrd
 |-  ( ph -> A <_ ( B +e A ) )